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» Poor expressive power.
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The Landscape: Type Theory

» Motivated by Semantics.

» Complete for termination.

» Type inference is undecidable.
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The Landscape: Type Theory

> Reasonably expressive,
1 intensionally.

» Type inference remains decidable
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» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
redudjbility.
» But us{\ess as a programming language.

» For every type 7, define a set of
reducible terms Red.,.

» Prove that all reducible terms are
normalizing. . .

» ...and that all typable terms are
reducible.
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Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
What if we endow it with full recursion as a fix binder?

v Yy

All the termination properties are lost, for very good
reasons.

v

Is everything lost?
» NO!

fi}‘c f fix f

AT 1L AT : L

BAD! GOOD!

f(x — 1) f(xz) f(z) f(xz+1) f(x —1) f(x — 2) f(x — 3)
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Deterministic Sized Types, Technically
» Types.
g:::a\w\g+1; T:::L[§]|T—>T.

» Typing Fixpoints.

» Reducibility sets are of the form Red?.

» 0 is an environment for index variables.

. Q » Proof of reducibility for fix x.M is
rather delicate.

IOy o TOTIIT :
» Termination. !!
» Proved by Reducibility.

» ...but of an indexed form.




Deterministic Sized Types, Technically

» Types.
g:::a\w\g+1; T:::L[§]|T—>T.
» Typing Fixpoints.

Too:va)l 7 M:fa+1] =7
DEfixa. M ] — 1

v

Quite Powerful.

» Can type many forms of structural recursion.
» Termination.

» Proved by Reducibility.

» ...but of an indexed form.
Type Inference.

» It is indeed decidable.

» But nontrivial.

v
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Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCoin then f(z — 1) else (f(z +1); f(z +1));
fix f.\z.if BiasedCoin then f(z + 1) else f(z — 1);

» Probabilistic termination is thus:

» Sensitive to the actual distribution from which we sample.
» Sensitive to how many recursive calls we perform.
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One-Counter Blind Markov Chains

» They are automata of the form (Q,d) where
» () is a finite set of states.
» §:Q — Dist(Q x {—1,0,1}).
» They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].
» Everything is purely deterministic.
» The counter value is ignored.
» The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.
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This is sufficient for typing:

» Unbiased random walks;

» Biased random walks.
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mimick the recursive structure by a OCBMC.
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Typing Fixpoints.
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Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Tvpineg Fixpoints

» Reducibility sets are now on the form Red?? |, ..
» p stands for the probability of being reducible.

» Reducibility sets are continuous:

Red?? = |_J Red?"
q<p

» Termination.
» By a quantitative nontrivial refinement of réducibility.
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Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which cannot be
typed:
A = \r.ax A(Ax.x).

» Types
T =% | A— B Av={r,..., T}

» Typing Rules: Examples
{T'EM:7}i<i<n '-M:{A—-B} THFN:A
'EM:{r,...,m} I'HMN:B

» Termination
» Again by reducibility.
» Completeness
» By subject expansion, the dual of subject reduction.
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Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B  Au={m,...,7m} se€{0,1}"

POM )= Y 2

> Tyl FM:s-x

This is unavoidable, due to recursion theory. [~ N -4
I mFMPBIVIUS-A ll‘lVllVZU"qS)’B

» Termination and Completieness

» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch
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Intersection Types and Computations

Monadic Intersection Types [BDL2018|

» They are a combination of oracle and
sized types.

» Intersections are needed for preciseness.

» Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.
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Ongoing and Future Work

» Non-Idempotent Intersection Types

» Monadic and Oracle Intersection Types are idempotent.
» Conjecture:

IDEMP : AST = NONIDEMP : PAST

» Linear Dependent Types

» Intersection Types are complete, but only for computations.

» In linear dependent types [DLG2011], one is (relatively
complete) for deterministic first-order functions.

» How about probabilism?

» Monadic types becomes indexed:
pi={oli] : plil}ier

> Subtyping is coupling-based.



Thank You!

(Questions?
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