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The Landscape: Type Theory

Simple Types

Polymorphic
Types

Intersection
Types Sized Types

τ ::= ι | τ → τ

τ ::= · · · | α | ∀α.τ τ ::= · · · | τ ∧ τ τ ::= · · · | ι[ξ]

I Sound for termination, in absence
of recursion.

I Poor expressive power.
I Intuitionistic Logic.

I Second-order Intuistionistic Logic.
I Very expressive, extensionally.
I Still poor, intensionally.

I Motivated by Semantics.
I Complete for termination.
I Type inference is undecidable.

I Reasonably expressive,
intensionally.

I Type inference remains decidable
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The Landscape: Recursion Theory

Determinism

Probabilism

Ms→∗ Ns

JMsK = Ds

Termination ∃Ns ∈ NF
∑

Ds = 1

Uniform
Termination

∀s.∃Ns ∈ NF ∀s.
∑

Ds = 1

∑
Ds can be smaller than 1.

Undecidable;
Σ0
1-complete.

Almost-Sure Termination
Π0

2-complete.
Π0

2-complete. Π0
2-complete.
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Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.

I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.

I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?

I All the termination properties are lost, for very good
reasons.

I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?

I All the termination properties are lost, for very good
reasons.

I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.

I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?

I NO!
fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types
I Pure λ-calculus with simple types is terminating.

I This can be proved in many ways, including by
reducibility.

I But useless as a programming language.
I What if we endow it with full recursion as a fix binder?
I All the termination properties are lost, for very good

reasons.
I Is everything lost?
I NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

I For every type τ , define a set of
reducible terms Redτ .

I Prove that all reducible terms are
normalizing. . .

I . . . and that all typable terms are
reducible.

(fix x.M)V →M{fix x.M/x}V



Deterministic Sized Types, Technically
I Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

I Typing Fixpoints.

Γ, x : ι[a]→ τ `M : ι[a+ 1]→ τ

Γ ` fix x.M : ι[ξ]→ τ

I Quite Powerful.
I Can type many forms of structural recursion.

I Termination.
I Proved by Reducibility.
I . . . but of an indexed form.

I Type Inference.
I It is indeed decidable.
I But nontrivial.

Index Terms

I Reducibility sets are of the form Redθτ .
I θ is an environment for index variables.
I Proof of reducibility for fix x.M is

rather delicate.
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Probabilistic Termination

I Examples:

fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

I Non-Examples:

fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

I Probabilistic termination is thus:
I Sensitive to the actual distribution from which we sample.
I Sensitive to how many recursive calls we perform.

Unbiased Random Walk
Biased Randomn Walk

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.
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One-Counter Blind Markov Chains

I They are automata of the form (Q, δ) where
I Q is a finite set of states.
I δ : Q→ Dist(Q× {−1, 0, 1}).

I They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].

I Everything is purely deterministic.
I The counter value is ignored.

I The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.
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Probabilistic Sized Types [DLGrellois2017]
I Basic Idea: craft a sized-type system in such a way as to

mimick the recursive structure by a OCBMC.

I Judgments.
Γ | ∆ `M : µ

I Typing Fixpoints.
Γ | x : σ ` V : ι[a+ 1]→ τ OCBMC (σ) terminates.

Γ | Θ ` fix x.V : ι[ξ]→ τ

I Typing Probabilistic Choice
Γ | ∆ `M : τ Γ | Ω ` N : ρ

Γ | 1
2
∆ + 1

2
Ω `M ⊕N : 1

2
τ + 1

2
ρ

I Termination.
I By a quantitative nontrivial refinement of reducibility.

Every higher-order variable occurs at most once.

This is sufficient for typing:
I Unbiased random walks;
I Biased random walks.

I Reducibility sets are now on the form Redθ,pτ
I p stands for the probability of being reducible.
I Reducibility sets are continuous:

Redθ,pτ =
⋃
q<p

Redθ,qτ
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Part I

Intersection Types



Deterministic Intersection Types
I Question: what are simple types missing as a way to

precisely capture termination?

I Very simple examples of normalizing terms which cannot be
typed:

∆ = λx.xx ∆(λx.x).

I Types

τ ::= ? | A→ B A ::= {τ1, . . . , τn}

I Typing Rules: Examples
{Γ `M : τi}1≤i≤n

Γ `M : {τ1, . . . , τn}
Γ `M : {A→ B} Γ ` N : A

Γ `MN : B

I Termination
I Again by reducibility.

I Completeness
I By subject expansion, the dual of subject reduction.
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Oracle Intersection Types [BreuvartDL2018]
I Probabilistic choice can be seen as a form of read operation:

M ⊕N = if BitInput thenM else N

I Types

τ ::= ? | A→ s ·B A ::= {τ1, . . . , τn} s ∈ {0, 1}∗

I Typing Rules: Examples

Γ `M : s ·A
Γ `M ⊕N : 0s ·A

Γ `M : r · {A→ s ·B} Γ ` N : q ·A
Γ `MN : (rqs) ·B

I Termination and Completeness
I Formulated in a rather unusual way.
I Proved as usual, but relative to a single probabilistic branch

P(M ↓) =
∑
`M :s·?

2|s|

This is unavoidable, due to recursion theory.
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Ongoing and Future Work

I Non-Idempotent Intersection Types
I Monadic and Oracle Intersection Types are idempotent.

I Conjecture:

IDEMP : AST = NONIDEMP : PAST

I Linear Dependent Types
I Intersection Types are complete, but only for computations.
I In linear dependent types [DLG2011], one is (relatively

complete) for deterministic first-order functions.
I How about probabilism?

I Monadic types becomes indexed:

µ ::= {σ[i] : p[i]}i∈I

I Subtyping is coupling-based.
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Thank You!

Questions?
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