On Type Systems
For Probabilistic Termination

Ugo Dal Lago
(Based on joint work with
Charles Grellois and Flavien Breuvart)

V4
ALMA MATER STUDIORUM 7 informatiques, (S mothématiaues

i) UNIVERSITA DI BOLOGNA W

CRECOGI+ELICA+GDRILL Meeting, October 10th 2018

Deterministc vs. Probabilistic Transition Systems

Deterministc vs. Probabilistic Transition Systems

Deterministc vs. Probabilistic Transition Systems

M—N — L

Deterministc vs. Probabilistic Transition Systems

M—N—L—

Deterministc vs. Probabilistic Transition Systems

M—N—L—

(‘Av—>>
—» A —A

Deterministc vs. Probabilistic Transition Systems

Deterministc vs. Probabilistic Transition Systems

m/ &:H

Deterministc vs. Probabilistic Transition Systems

1 N/
/' \
\

Deterministc vs. Probabilistic Transition Systems

P

\t

LN
M/ >‘Q

L

/

(A, —>)
—»: A — Dist(A)

The Landscape: Type Theory

Simple Types

To=1 | T =T

The Landscape: Type Theory

Simple Types

To=1 T =T

» Sound for termination, in absence
of recursion.

» Poor expressive power.

» Intuitionistic Logic.

The Landscape: Type Theory

Simple Types

To=1 | T =T

Polymorphic
Types

T = ‘ o | Yoa.1

The Landscape: Type Theory

» Second-order Intuistionistic Logic. [ypes

> Very expressive, extensionally. T — T

» Still poor, intensionally.

)

Polymorphic
Types

T = ‘ o | Yoa.1

The Landscape: Type Theory

Simple Types

Tu=1 | T—=T

Polymorphic Intersection
Types Types

T = ‘a|Va.T T = .- ‘T/\T

The Landscape: Type Theory

» Motivated by Semantics.

» Complete for termination.

» Type inference is undecidable.

.

Polymorphic Intersection
Types Types

T = ‘a|Va.T T = |T/\T

The Landscape: Type Theory

Simple Types

Tu=1 | T—=T

Polymorphic Intersection _
Types Types Sized Types

T | L[€]

T = ‘a|Va.T T = .- ‘T/\T

The Landscape: Type Theory

> Reasonably expressive,
1 intensionally.

» Type inference remains decidable

TR\

Polymorphic Intersection

Types Types Sized Types

T = | L[€]

T = ‘a|Va.T T = .- ‘T/\T

The Landscape: Recursion Theory

Determinism

Ms —* N,

The Landscape: Recursion Theory

Determinism Probabilism

Ms —* N [M3] = Dy

The Landscape: Recursion Theory

> D, can be smaller than 1.

Determinism Probabilism

M3 —* N, [M3] = Dy

The Landscape: Recursion Theory

Determinism Probabilism
Ms —* N [M3] = Dy

Termination dN, € NF

The Landscape: Recursion Theory

Undecidable;
0
>i-complete. sm Probabilism
N, [M5] = D,

Termination dN, € NF

The Landscape: Recursion Theory

Determinism Probabilism
Ms —* N [M3] = Dy

Termination IN; € NF > D=1

The Landscape: Recursion Theory

Almost-Sure Termination
D I19-complete.

Ms —* N [=D,

Termination IN; € NF > D=1

The Landscape: Recursion Theory

Determinism Probabilism

Ms —* N, [M3] = D,
Termination IN; € NF > D=1
Uniform Vs.3N, € NF

Termination

The Landscape: Recursion Theory

Dot i Probabilism
I19-complete.
—* Ny [M3] = Dy
Termination N, QNF > D=1
Uniform Vs.IN, € NF

Termination

The Landscape: Recursion Theory

Determinism Probabilism

Ms —* N, [M3] = D,
Termination IN; € NF > D=1
Uniform Vs.3N, € NF Vs.> Dy=1

Termination

The Landscape: Recursion Theory

Termination

Uniform
Termination

D) Lolil:

Determir:

I19-complete.

Ms —* N,
dN, € NF

Vs.dN, € NF

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
redudjbility.
» But us{\ess as a programming language.

» For every type 7, define a set of
reducible terms Red.,.

» Prove that all reducible terms are
normalizing. . .

» ...and that all typable terms are
reducible.

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?

(fix x. M)V — M{fix x.M/x}V

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?
» All the termination properties are lost, for very good
reasons.

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
» What if we endow it with full recursion as a fix binder?
» All the termination properties are lost, for very good
reasons.
» [s everything lost?

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.

» This can be proved in many ways, including by

reducibility.

» But useless as a programming language.
What if we endow it with full recursion as a fix binder?
All the termination properties are lost, for very good
reasons.
Is everything lost?
» NO!

v Yy

v

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.

» This can be proved in many ways, including by

reducibility.

» But useless as a programming language.
What if we endow it with full recursion as a fix binder?
All the termination properties are lost, for very good
reasons.
Is everything lost?
» NO!

v Yy

v

fi}‘c f

AT 1L

BAD!

f(x — 1) f(xz) f(z) f(xz+1)

Deterministic Sized Types

» Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by
reducibility.
» But useless as a programming language.
What if we endow it with full recursion as a fix binder?

v Yy

All the termination properties are lost, for very good
reasons.

v

Is everything lost?
» NO!

fi}‘c f fix f

AT 1L AT : L

BAD! GOOD!

f(x — 1) f(xz) f(z) f(xz+1) f(x —1) f(x — 2) f(x — 3)

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§+1; T:::L[£]|T—>7'.

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§+1; T:::L[£]|T—>7'.

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§+1; T:::L[£]|T—>T.

» Typing Fixpoints.
Too:va)l 7 M:fa+1] =7
M'Ffixa M :uf§] =7

Deterministic Sized Types, Technically
» Types.
5:::a‘w‘§—|—1; T:::L[£]|T—>T.

» Typing Fixpoints.
Too:va)l 7 M:fa+1] =7
DEfixa. M] — 1

» Quite Powerful.
» Can type many forms of structural recursion.

Deterministic Sized Types, Technically
» Types.
g:::a\w\g+1; T:::L[§]|T—>T.

» Typing Fixpoints.
Too:va)l 7 M:fa+1] =7
DEfixa. M] — 1

» Quite Powerful.

» Can type many forms of structural recursion.
» Termination.

» Proved by Reducibility.

» ...but of an indexed form.

Deterministic Sized Types, Technically
» Types.
g:::a\w\g+1; T:::L[§]|T—>T.

» Typing Fixpoints.

» Reducibility sets are of the form Red?.

» 0 is an environment for index variables.

. Q » Proof of reducibility for fix x.M is
rather delicate.

IOy o TOTIIT :
» Termination. !!
» Proved by Reducibility.

» ...but of an indexed form.

Deterministic Sized Types, Technically

» Types.
g:::a\w\g+1; T:::L[§]|T—>T.
» Typing Fixpoints.

Too:va)l 7 M:fa+1] =7
DEfixa. M] — 1

v

Quite Powerful.

» Can type many forms of structural recursion.
» Termination.

» Proved by Reducibility.

» ...but of an indexed form.
Type Inference.

» It is indeed decidable.

» But nontrivial.

v

Probabilistic Termination

» Examples:

fix fAx.if x > 0 then if FuirCoin then f(xz — 1) else f(x + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.J¥.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);

| Unbiased Random Walk f the® fl@+1) else .

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.J¥.if © > 0 then if BiasedCoin then f(z — 1) else f(z + 1);

[Unbiased Random Wajw then f(x +1) else .
| Biased Randomn Walk |

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCoin then f(z — 1) else (f(z +1); f(z +1));
fix f.\z.if BiasedCoin then f(z + 1) else f(z — 1);

Probabilistic Termination

» Examples:

fix fAx.if x > 0 then if FuirCoin then f(xz — 1) else f(x + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCpin then f(z — 1) else (f(z +1); f(z +1));
fix fAx.if BiasACom then f(z + 1) else f(xz — 1);

Unbiased Random Walk, with two upward calls.

Probabilistic Termination

» Examples:

fix fAx.if x > 0 then if FuirCoin then f(xz — 1) else f(x + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:
fix f.Ax.if FairCpin then f(z — 1) else (f(z +1); f(z +1));

fix fAx.if BiasACom then f(z + 1) else f(z — 1);
Unbiased Random Walk, WitH\two upward calls. |
Biased Random Walk, the “wrong” way.

Probabilistic Termination

» Examples:

fix f.\z.if £ > 0 then if FairCoin then f(z — 1) else f(z + 1);
fix f.A\z.if £ > 0 then if BiasedCoin then f(z — 1) else f(z + 1);
fix f.\z.if BiasedCoin then f(z + 1) else x.

» Non-Examples:

fix f.Ax.if FairCoin then f(z — 1) else (f(z +1); f(z +1));
fix f.\z.if BiasedCoin then f(z + 1) else f(z — 1);

» Probabilistic termination is thus:

» Sensitive to the actual distribution from which we sample.
» Sensitive to how many recursive calls we perform.

One-Counter Blind Markov Chains

» They are automata of the form (Q,d) where
» () is a finite set of states.
» §:Q — Dist(Q x {—1,0,1}).
» They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].
» Everything is purely deterministic.
» The counter value is ignored.

One-Counter Blind Markov Chains

» They are automata of the form (Q,d) where
» () is a finite set of states.
» §:Q — Dist(Q x {—1,0,1}).
» They are a very special form of One-Counter Markov
Decision Processeses [BBEK2011].
» Everything is purely deterministic.
» The counter value is ignored.
» The probability of reaching a configuration where the
counter is 0 can be approximated arbitrarily well in
polynomial time.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.

FAAI—M:/L

Every higher-order variable occurs at most once.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Typing Fixpoints.

Plz:obFV:ia+1 —7 OCBMC(0) terminates.
FekFfixaV il —r

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Typing Fixpoints.
Pla:obViatl] =7 OCBMC(c) terminates.
rier fi/\x.V e = 7

This is sufficient for typing:

» Unbiased random walks;

» Biased random walks.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Typing Fixpoints.

Plz:obFV:ia+1 —7 OCBMC(0) terminates.
FekFfixaV il —r

» Typing Probabilistic Choice
T'|AFM:7 T|QFN:p
FiA+1QFMaeN:ir+1p

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

v

Judgments.
F'NAFM:p

v

Typing Fixpoints.
Plz:obFV:ia+1 —7 OCBMC(0) terminates.
FekFfixaV il —r

v

Typing Probabilistic Choice
T'|AFM:7 T|QFN:p
FiA+1QFMaeN:ir+1p

Termination.

v

» By a quantitative nontrivial refinement of reducibility.

Probabilistic Sized Types [DLGrellois2017]

» Basic Idea: craft a sized-type system in such a way as to
mimick the recursive structure by a OCBMC.

» Judgments.
F'NAFM:p

» Tvpineg Fixpoints

» Reducibility sets are now on the form Red?? |, ..
» p stands for the probability of being reducible.

» Reducibility sets are continuous:

Red?? = |_J Red?"
q<p

» Termination.
» By a quantitative nontrivial refinement of réducibility.

Part [

Intersection Types

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which cannot be
typed:
A = \r.ax A(Ax.x).

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which cannot be
typed:
A = \r.ax A(Ax.x).

» Types
Tu=% | A— B Av={r,..., T}

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which cannot be
typed:
A = \r.ax A(Ax.x).

» Types
T =% | A— B Av={r,..., T}

» Typing Rules: Examples
{T'EM:7}i<i<n '-M:{A—-B} THFN:A
'EM:{r,...,m} I'HMN:B

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?

» Very simple examples of normalizing terms which cannot be
typed:
A = \r.ax A(Ax.x).
» Types
T:::*|A%B Av={r,..., T}

» Typing Rules: Examples

{T'EM:7}i<i<n '-M:{A—-B} THFN:A

'EM:{r,...,m} I'HMN:B
» Termination

» Again by reducibility.

Deterministic Intersection Types

» Question: what are simple types missing as a way to
precisely capture termination?
» Very simple examples of normalizing terms which cannot be
typed:
A = \r.ax A(Ax.x).

» Types
T =% | A— B Av={r,..., T}

» Typing Rules: Examples
{T'EM:7}i<i<n '-M:{A—-B} THFN:A
'EM:{r,...,m} I'HMN:B

» Termination
» Again by reducibility.
» Completeness
» By subject expansion, the dual of subject reduction.

Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

» Typing Rules: Examples

TEM:s-A '-M:r-{A—s-B} TFN:q-A
'-M&N:0s-A ' MN :(rgs)-B

Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

» Typing Rules: Examples

TEM:s-A '-M:r-{A—s-B} TFN:q-A
'-M&N:0s-A ' MN :(rgs)-B

» Termination and Completeness

» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch

Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types
Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"
P(M |) = Z 9lsl
> Tyl FM:s-x
TEM:s-A N r-{A—-s-B} TFN:q-A
'-M&N:0s-A ' MN :(rgs)-B

» Termination and Completieness
» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch

Oracle Intersection Types |BreuvartDL2018|

» Probabilistic choice can be seen as a form of read operation:

M & N = if Bitlnput then M else N

» Types

Tu=% | A=»s-B Au={m,...,7m} se€{0,1}"

POM)= Y 2

> Tyl FM:s-x

This is unavoidable, due to recursion theory. [~ N -4
I mFMPBIVIUS-A ll‘lVllVZU"qS)’B

» Termination and Completieness

» Formulated in a rather unusual way.
» Proved as usual, but relative to a single probabilistic branch

Intersection Types and Computations

Intersection Types and Computations

M

)

Intersection Types

[*V]

Intersection Types and Computations

Intersection Types and Computations

M M

X

Oracle Intersection Types

174 ¢ » ¢ »

Intersection Types and Computations

v N/ 7NN

Intersection Types and Computations

Monadic Intersection Types [BDL2018|

» They are a combination of oracle and
sized types.

» Intersections are needed for preciseness.

» Distributions of types allow to analyse

more than one probabilistic branch in
the same type derivation.

Ongoing and Future Work

» Non-Idempotent Intersection Types
» Monadic and Oracle Intersection Types are idempotent.

Ongoing and Future Work

» Non-Idempotent Intersection Types

» Monadic and Oracle Intersection Types are idempotent.
» Conjecture:

IDEMP : AST = NONIDEMP : PAST

Ongoing and Future Work

» Non-Idempotent Intersection Types

» Monadic and Oracle Intersection Types are idempotent.
» Conjecture:

IDEMP : AST = NONIDEMP : PAST

» Linear Dependent Types
» Intersection Types are complete, but only for computations.
» In linear dependent types [DLG2011], one is (relatively
complete) for deterministic first-order functions.

Ongoing and Future Work

» Non-Idempotent Intersection Types

» Monadic and Oracle Intersection Types are idempotent.
» Conjecture:

IDEMP : AST = NONIDEMP : PAST

» Linear Dependent Types

» Intersection Types are complete, but only for computations.

» In linear dependent types [DLG2011], one is (relatively
complete) for deterministic first-order functions.

» How about probabilism?

» Monadic types becomes indexed:
pi={oli] : plil}ier

> Subtyping is coupling-based.

Thank You!

(Questions?

	Intersection Types

