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Introduction

In logic:

Intuitionistic logic
Girard translation // Modal logic S4

In algebra:

Heyting algebras S4 algebras
Kleisli constructionoo

This can be extended to all intermediate logics and extensions of the
modal logic S4.
(A logic L is called an intermediate logic if Int ⊆ L ⊆ Cl)
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Introduction

A. Wroński, ”Intermediate logics and Disjunction Property”(1973)
’There are 2ω intermediate logics with the disjunction property’.
In the paper, two constructions of Heyting algebras appear:

co-lifting of Heyting algebras H⊤

quotient modulo the monolith H/µH

We propose an S4 analogue of these constructions.

We show that they correspond to each other via the Kleisli
construction.

As an application, we get new logics having the disjunction property.
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Introduction

Definition

S4 : the category of S4 algebras and homomorphisms.
Hey : the category of Heyting algebras and homomorphisms.

Boolntemb × S4emb
∼=

&&

(−)□

��

S4SI

(−)□

��

gg
S4

(−)□

��
Heyemb

∼=

(−)⊤

&&
HeySI

−/µ

ff Hey
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Heyting algebra

Definition

A Heyting algebra H = ⟨H,∧,∨, 1, 0,→⟩ is a bounded distributive lattice
equipped with a binary operation → s.t. a ∧ b ≤ c ⇔ a ≤ b → c.

Remark: any Heyting algebra can be seen as a posetal Cartesian closed
category with finite coproducts.

Example:

Any bounded chain can be regarded as a Heyting
algebra with

a → b =

{
1 a ≤ b

b o.w .

H
• 1H

• b

• a

• 0H

Kanako KOBAYASHI (Kyoto Univ.) Co-lifting and its S4 analogue 2018/10/08 7 / 35



S4 algebra

Definition

An S4 algebra B = ⟨B,∧,∨,−, 1, 0,□⟩ is a Boolean algebra equipped with
a unary operation □ s.t. □(a ∧ b) = □a ∧□b, □1 = 1, □a ≤ a and
□a ≤ □□a.

Remark: any S4 algebra can be seen as a posetal category with a comonad
□ which preserves finite products.

Example:
Let X = ⟨X , τ⟩ be a topological space and int an interior operator.
Then ⟨P(X ),∩,∪,∼,X , ∅, int⟩ is an S4 algebra.
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Kleisli construction

Definition

B : an S4 algebra.

A Kleisli order ≤□ on B is defined by a ≤□ b ⇔ □a ≤ b.

B□ := ⟨B,≤□⟩/ ∼ where a ∼ b ⇔ a ≤□ b and b ≤□ a.

B□ := ⟨B□,∨□,∧□, 1□, 0□,→□⟩ where
[a] ∧□ [b] = [a ∧ b],
[a] ∨□ [b] = [□a ∨□b],
1□ = [1],
0□ = [0], and
[a] →□ [b] = [□a → b].
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Kleisli construction

Lemma

B : an S4 algebra.
Then, B□ is a Heyting algebra.

Remark: B□ is a Kleisli category of □. (In this case, the Kleisli-cat. and the

EM-cat. of a posetal category B are categorically equivalent.)

The Kleisli construction can be extended to a functor (−)□ : S4 −→ Hey.

Lemma

B1,B2 : S4 algebras, f : B1 → B2 : an S4 homomorphism.
Define a map f□ : B1□ → B2□ by f□([a]1) = [f (a)]2.
Then f□ is a Heyting homomorphism.
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Kleisli construction

Definition

S4 : the category of S4 algebras and homomorphisms.
Hey : the category of Heyting algebras and homomorphisms.

S4emb : the category of S4 algebras and embeddings.
Heyemb : the category of Heyting algebras and embeddings.

S4emb

(−)□

��

S4SI S4

(−)□

��
Heyemb HeySI Hey
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Kleisli construction

The Kleisli construction (−)□ : S4 −→ Hey preserves

congruence lattices and

subdirect irreducibility.
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Congruence lattice

Definition (Universal algebra)

A : an algebra.

An equivalence relation θ on A is called congruence on A if it
preserves algebraic operations of A.
Write Con(A) for the congruence lattice of A.

In general:

Con(A)

A2

∆

Example: bounded chain (as a Heyting algebra).

H
•

θa

1

• a′

• a

• 0

Con(H)

• θ0 = H2

• θa′

• θa

• θ1 = ∆

Kanako KOBAYASHI (Kyoto Univ.) Co-lifting and its S4 analogue 2018/10/08 13 / 35



Congruence lattice

The Kleisli construction (−)□ : S4 −→ Hey preserves congruence lattices.

Lemma

B : an S4 algebra, θ ∈ Con(B).

Con(B) ∼= Con(B□)

(B/θ)□ ∼= B□/θ□
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Subdirectly irreducible

Definition (Universal algebra)

A, Ai (i ∈ I ): algebras.

We call A a subdirect product of {Ai}i∈I if e : A ↣
∏

i∈I Ai where
each pi ◦ e is surjective.

A // e //

p◦e
&& &&

∏
i∈I Ai

p

��
Ai

A is called subdirectly irreducible (s.i. for short) if A cannot be
decomposed as a subdirect product.

Example: Every finite chain is s.i. as a Heyting algebra.
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Subdirectly irreducible

Theorem (Fundamental Theorem of Universal Algebra)

Every algebra is isomorphic to a subdirect product of s.i. algebras.

Example:

• ω • n
• n − 1

// //
∏

n∈ω
• 2 • 2
• 1 • 1
• 0 • 0
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Monolith

Definition (Universal algebra)

A : an algebra.
A monolith of A (write µA) is the 2nd-minimum congruence of A (if any).

Lemma (Universal algebra)

A : an algebra.
A is s.i. ⇔ A has a monolith.

Con(A) A2

µA

∆

The Kleisli construction (−)□ : S4 −→ Hey preserves s.i.

Corollary

B : an S4 algebra. Then, B is s.i. ⇔ B□ is s.i.
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Opremum

Definition

H : a Heyting algebra.
An opremum of H (write ⋆H) is the 2nd-largest element of H (if exists).

Definition

B : an S4 algebra.

An opremum of B is (intuitively) a 2nd-largest element of B according
to the Kleisli order ≤□
(i.e. an elements a ∈ B \ {1B} s.t. ∀b ∈ B \ {1B} □b ≤ a if exists).

Write Op(B) for the set of oprema of B.
Write ⋆B for the minimum opremum of B (if exists).
(Op(B) ̸= ∅ ⇒ ⋆B exists.)
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Opremum

Lemma

A : an algebra (Heyting or S4).
A is s.i. ⇔ A has a monolith ⇔ A has an opremum.

s.i. Heyting algebra

1H
⋆H

0H

s.i. S4 algebra

1B
Op(B)

⋆B

0B
The Kleisli construction (−)□ : S4 −→ Hey preserves oprema.

Lemma

B : an s.i. S4 algebra. Then, ⋆B□ = Op(B) = [⋆B].
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What we have obtained so far

Definition

S4SI: the category of s.i. S4 algebras and opremum preserving
homomorphisms.
HeySI: the category of s.i. Heyting algebras and opremum preserving
homomorphisms.

S4emb

(−)□

��

S4SI

(−)□

��

S4

(−)□

��
Heyemb HeySI Hey

Kanako KOBAYASHI (Kyoto Univ.) Co-lifting and its S4 analogue 2018/10/08 20 / 35



Outline

1 Introduction

2 Basic Definitions

3 Co-lifting of Heyting Algebras

4 S4 analogue of co-lifting

Kanako KOBAYASHI (Kyoto Univ.) Co-lifting and its S4 analogue 2018/10/08 21 / 35



Co-lifting of Heyting algebras

Definition

Heyemb : the category of Heyting algebras and embeddings.
HeySI : the category of s.i. Heyting algebras and opremum-preserving
homomorphisms.

Here, we will describe the following equivalence:

S4emb

(−)□

��

S4SI

(−)□

��

S4

(−)□

��
Heyemb

∼=

(−)⊤

$$
HeySI

−/µ

dd Hey
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Co-lifting (−)⊤ : Heyemb −→ HeySI

Definition

H : a Heyting algebra.
A co-lifting of H (write H⊤) is obtained by adding a new top-element
above the top of H.

• ⊤
• 1H • 1H� //

• 0H • 0H

This is an s.i. Heyting algebra.

Remark: H⊤ is the subscone (injective scone) of H:

H⊤ //

��

Sub(Sets)

cod
��

H
H(1,−)

// Sets
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Co-lifting (−)⊤ : Heyemb −→ HeySI

Co-lifting can be extended to a functor (−)⊤ : Heyemb −→ HeySI.

Lemma

H1,H2 : Heyting algebras, f : H1 → H2 : Heyting homomorphism.
If f is an embedding, then the natural extension f ⊤ : H⊤

1 → H⊤
2 is an

opremum-preserving hom.

•� f ⊤ //•

• •

H1
f // H2

• •
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Quotient modulo the monolith −/µ : HeySI −→ Heyemb

Quotient modulo the monolith:

•
• •

� /µ //

• •

Lemma

H : an s.i. Heyting algebra.
(H/µH)

⊤ ∼= H.

This can be extended to a functor −/µ : HeySI −→ Heyemb.

Lemma

H1,H2 : s.i. Heyting algebras, f : H1 → H2 Heyting homomorphism,
If f preserves the opremum, then there is f ′ : H1/µH1 ↣ H2/µH2 .
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Consequence

Definition

Heyemb : the category of Heyting algebras and embeddings.
HeySI : the category of s.i. Heyting algebras and opremum-preserving
homomorphisms.

Theorem

Heyemb
∼= HeySI.

S4emb

(−)□

��

S4SI

(−)□

��

S4

(−)□

��
Heyemb

∼=

(−)⊤

$$
HeySI

−/µ

cc Hey
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S4 analogue of co-lifting

Definition

Boolntemb : the category of non-trivial Boolean algebras and embeddings.

Here, we will show the following equivalence and commutativity
(up-to-iso) of the diagram:

Boolntemb × S4emb
∼=

&&

(−)□

��

S4SI

(−)□

��

gg
S4

(−)□

��
Heyemb

∼=

(−)⊤

&&
HeySI

−/µ

ff Hey
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• construction: S4-analogue of co-lifting (−)⊤

Definition

I : a non-trivial Boolean algebra, B = ⟨B,□B⟩ : an S4 algebra.
Let I • B := ⟨I× B,□⟩ where □ : I × B → I × B is defined by

□⟨i , a⟩ =

{
⟨1I, 1B⟩ ⟨i , a⟩ = ⟨1I, 1B⟩
⟨0I,□Ba⟩ o.w .

⟨1I ,1B⟩

• • □bb

•

□

��

•

□

��

I

• • •
□B

cc •

B
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• construction: S4-analogue of co-lifting (−)⊤

Lemma

I: a non-trivial Boolean algebra, B: an S4 algebra.
I • B is an s.i. S4 algebra with Op(I • B) = {⟨i , 1B⟩ | i ∈ I \ {1I}}

Op(I•B)

•
I •

•
•

B

Lemma

I: a non-trivial Boolean algebra, B: an S4 algebra.
(I • B)/µI•B ∼= B
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Decomposition into • algebra

Lemma

B: an s.i. S4 algebra.
IB • (B/µB) ∼= B where the Boolean algebra IB is defined by

base set IB := Op(B) ∪ {1B}
∧,∨, 1I are same as those of B
−i = −Bi ∨ ⋆B

0I = ⋆B

1B

IB
⋆B

0B
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Consequence

Definition

Boolntemb : the category of non-trivial Boolean algebras and embeddings.
S4emb : the category of S4 algebras and embeddings.
S4SI : the category of s.i. S4 algebras and opremum-preserving
homomorphisms.

Boolntemb × S4emb
∼=

(−)•(−)

&&

(−)□

��

S4SI

(−)□

��

⟨I(−),(−)/µ⟩

gg
S4

(−)□

��
Heyemb

∼=

(−)⊤

&&
HeySI

−/µ

ff Hey
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Commutativity of co-lifting and Kleisli construction

Lemma

I : a non-trivial Boolean algebra, B : an S4 algebra.
(I • B)□ ∼= (B□)⊤.

Remark: B□ is same as a sublattice of B that consists of box-stable
elements {a ∈ B | □a = a} (i.e. EM-cat. of ⟨B,□⟩).

• • □bb = ⊤
•

□

��

•

□

��

I

• • • • •
□

cc • = B□

B
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Summary

We refined the co-lifting of Heyting algebras (appeared in Wrónski
1973) as a categorical equivalence,

proposed the • construction as S4 analogue of co-lifting,

and showed correspondence of co-lifting and • construction via the
Kleisli construction.

Boolntemb × S4emb
∼=

(−)□

��

S4SI

(−)□

��

S4

(−)□

��
Heyemb

∼= HeySI Hey
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Application

Theorem (Wrónski, 1973)

There are 2ω intermediate logics having the disjunction property (DP).

There is a map τ : Ext(Int) → NExt(S4) preserving the disjunction
property. So, as an immediate consequence of Wrónski’s theorem, we get:

Corollary

There are 2ω extensions of the modal logic S4 with the disjunction
property.

As an application of our work, we get new logics with DP:

Proposition (new result)

There are infinitely many extensions of S4 which have the disjunction
property and cannot be expressed as τL.
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