Co-lifting of Heyting algebras and its S4 analogue

Kanako KOBAYASHI

Kyoto University

CRECOGI meeting 2018, 8 Oct.

Introduction

In logic:

In algebra:

Heyting algebras
$$\leftarrow$$
 Kleisli construction S4 algebras

This can be extended to all intermediate logics and extensions of the modal logic S4.

(A logic L is called an intermediate logic if $Int \subseteq L \subseteq CI$)

Introduction

- A. Wroński, "Intermediate logics and Disjunction Property" (1973) 'There are 2^{ω} intermediate logics with the disjunction property'. In the paper, two constructions of Heyting algebras appear:
 - co-lifting of Heyting algebras \mathbb{H}^{\top}
 - ullet quotient modulo the monolith $\mathbb{H}/\mu_{\mathbb{H}}$
- We propose an S4 analogue of these constructions.
- We show that they correspond to each other via the Kleisli construction.
- As an application, we get new logics having the disjunction property.

Introduction

Definition

S4: the category of S4 algebras and homomorphisms.

Hey: the category of Heyting algebras and homomorphisms.

Outline

- Introduction
- 2 Basic Definitions
- 3 Co-lifting of Heyting Algebras
- 4 S4 analogue of co-lifting

Outline

- Introduction
- 2 Basic Definitions
- Co-lifting of Heyting Algebras
- 4 S4 analogue of co-lifting

Heyting algebra

Definition

A Heyting algebra $\mathbb{H}=\langle H,\wedge,\vee,1,0,\rightarrow \rangle$ is a bounded distributive lattice equipped with a binary operation \rightarrow s.t. $a \wedge b \leq c \Leftrightarrow a \leq b \rightarrow c$.

Remark: any Heyting algebra can be seen as a posetal Cartesian closed category with finite coproducts.

Example:

Any bounded chain can be regarded as a Heyting algebra with

$$a \rightarrow b = \begin{cases} 1 & a \leq b \\ b & o.w. \end{cases}$$

S4 algebra

Definition

An S4 algebra $\mathbb{B}=\langle B,\wedge,\vee,-,1,0,\square\rangle$ is a Boolean algebra equipped with a unary operation \square s.t. $\square(a\wedge b)=\square a\wedge\square b,\ \square 1=1,\ \square a\leq a$ and $\square a\leq\square\square a.$

Remark: any S4 algebra can be seen as a posetal category with a comonad \square which preserves finite products.

Example:

Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space and int an interior operator.

Then $\langle \mathcal{P}(X), \cap, \cup, \sim, X, \emptyset, \mathsf{int} \rangle$ is an S4 algebra.

Definition

 \mathbb{B} : an S4 algebra.

- A Kleisli order \leq_{\square} on \mathbb{B} is defined by $a \leq_{\square} b \Leftrightarrow \square a \leq b$.
- $B_{\square} := \langle B, \leq_{\square} \rangle / \sim$ where $a \sim b \Leftrightarrow a \leq_{\square} b$ and $b \leq_{\square} a$.
- $\bullet \ \, \mathbb{B}_\square:=\langle \textit{B}_\square,\vee_\square,\wedge_\square,1_\square,0_\square,\rightarrow_\square\rangle \,\, \text{where}$
 - $[a] \wedge_{\square} [b] = [a \wedge b],$
 - $[a] \vee_{\square} [b] = [\square a \vee \square b],$
 - $1_{\square} = [1]$,
 - $0_{\square} = [0]$, and
 - $[a] \rightarrow_{\square} [b] = [\square a \rightarrow b].$

Lemma

 \mathbb{B} : an S4 algebra.

Then, \mathbb{B}_{\sqcap} is a Heyting algebra.

Remark: \mathbb{B}_{\square} is a Kleisli category of \square . (In this case, the Kleisli-cat. and the EM-cat. of a posetal category \mathbb{B} are categorically equivalent.)

The Kleisli construction can be extended to a functor $(-)_{\square}: S4 \longrightarrow Hey$.

Lemma

 $\mathbb{B}_1, \mathbb{B}_2$: S4 algebras, $f: \mathbb{B}_1 \to \mathbb{B}_2$: an S4 homomorphism.

Define a map $f_{\square}: B_{1\square} \to B_{2\square}$ by $f_{\square}([a]_1) = [f(a)]_2$.

Then f_{\square} is a Heyting homomorphism.

Definition

S4: the category of S4 algebras and homomorphisms.

Hey: the category of Heyting algebras and homomorphisms.

 $S4_{emb}$: the category of S4 algebras and embeddings.

Hey_{emb}: the category of Heyting algebras and embeddings.

Definition

S4: the category of S4 algebras and homomorphisms.

Hey: the category of Heyting algebras and homomorphisms.

S4_{emb}: the category of S4 algebras and embeddings.

Hey_{emb}: the category of Heyting algebras and embeddings.

Definition

S4: the category of S4 algebras and homomorphisms.

Hey: the category of Heyting algebras and homomorphisms.

S4_{emb}: the category of S4 algebras and embeddings.

Hey_{emb}: the category of Heyting algebras and embeddings.

The Kleisli construction $(-)^{\square}: S4 \longrightarrow Hey preserves$

- congruence lattices and
- subdirect irreducibility.

Congruence lattice

Definition (Universal algebra)

 \mathbb{A} : an algebra.

- An equivalence relation θ on A is called congruence on \mathbb{A} if it preserves algebraic operations of \mathbb{A} .
- Write Con(A) for the congruence lattice of A.

In general:

Example: bounded chain (as a Heyting algebra).

Congruence lattice

The Kleisli construction $(-)_{\square}: S4 \longrightarrow Hey$ preserves congruence lattices.

Lemma

 \mathbb{B} : an S4 algebra, $\theta \in \mathbf{Con}(\mathbb{B})$.

- $\mathsf{Con}(\mathbb{B}) \cong \mathsf{Con}(\mathbb{B}_\square)$
- $(\mathbb{B}/\theta)_{\square} \cong \mathbb{B}_{\square}/\theta_{\square}$

Subdirectly irreducible

Definition (Universal algebra)

 \mathbb{A} , \mathbb{A}_i $(i \in I)$: algebras.

• We call \mathbb{A} a subdirect product of $\{\mathbb{A}_i\}_{i\in I}$ if $e: \mathbb{A} \rightarrow \prod_{i\in I} \mathbb{A}_i$ where each $p_i \circ e$ is surjective.

 A is called subdirectly irreducible (s.i. for short) if A cannot be decomposed as a subdirect product.

Example: Every finite chain is s.i. as a Heyting algebra.

Subdirectly irreducible

Theorem (Fundamental Theorem of Universal Algebra)

Every algebra is isomorphic to a subdirect product of s.i. algebras.

Example:

Monolith

Definition (Universal algebra)

 \mathbb{A} : an algebra.

A monolith of \mathbb{A} (write $\mu_{\mathbb{A}}$) is the 2nd-minimum congruence of \mathbb{A} (if any).

Lemma (Universal algebra)

 \mathbb{A} : an algebra.

 \mathbb{A} is s.i. $\Leftrightarrow \mathbb{A}$ has a monolith.

 $\mathsf{Con}(\mathbb{A})$

The Kleisli construction $(-)_{\square}: S4 \longrightarrow Hey preserves s.i.$

Corollary

 \mathbb{B} : an S4 algebra. Then, \mathbb{B} is s.i. $\Leftrightarrow \mathbb{B}_{\square}$ is s.i.

Opremum

Definition

 \mathbb{H} : a Heyting algebra.

An opremum of \mathbb{H} (write $\star_{\mathbb{H}}$) is the 2nd-largest element of \mathbb{H} (if exists).

Definition

 \mathbb{B} : an S4 algebra.

- An opremum of $\mathbb B$ is (intuitively) a 2nd-largest element of $\mathbb B$ according to the Kleisli order \leq_{\square} (i.e. an elements $a \in \mathbb B \setminus \{1_B\}$ s.t. $\forall b \in B \setminus \{1_B\} \ \square b \leq a$ if exists).
- Write $Op(\mathbb{B})$ for the set of oprema of \mathbb{B} .
- Write $\star_{\mathbb{B}}$ for the minimum opremum of \mathbb{B} (if exists). $(Op(\mathbb{B}) \neq \emptyset \Rightarrow \star_{\mathbb{B}} \text{ exists.})$

Opremum

Lemma

 \mathbb{A} : an algebra (Heyting or S4).

 \mathbb{A} is s.i. $\Leftrightarrow \mathbb{A}$ has a monolith $\Leftrightarrow \mathbb{A}$ has an opremum.

s.i. Heyting algebra

s.i. S4 algebra

The Kleisli construction $(-)_{\square}: S4 \longrightarrow Hey preserves oprema.$

Lemma

 \mathbb{B} : an s.i. S4 algebra. Then, $\star_{\mathbb{B}_{\square}} = Op(\mathbb{B}) = [\star_{\mathbb{B}}].$

What we have obtained so far

Definition

 $\mathsf{S4}_{\mathsf{SI}}$: the category of s.i. $\mathsf{S4}$ algebras and opremum preserving homomorphisms.

Hey_{SI}: the category of s.i. Heyting algebras and opremum preserving homomorphisms.

Outline

- Introduction
- 2 Basic Definitions
- 3 Co-lifting of Heyting Algebras
- 4 S4 analogue of co-lifting

Co-lifting of Heyting algebras

Definition

Hey_{emb}: the category of Heyting algebras and embeddings.

 $\mathsf{Hey}_{\mathsf{SI}}$: the category of s.i. Heyting algebras and opremum-preserving homomorphisms.

Here, we will describe the following equivalence:

Co-lifting $(-)^{\top}$: Hey_{emb} \longrightarrow Hey_{SI}

Definition

 \mathbb{H} : a Heyting algebra.

A co-lifting of \mathbb{H} (write \mathbb{H}^{\top}) is obtained by adding a new top-element above the top of \mathbb{H} .

This is an s.i. Heyting algebra.

Remark: \mathbb{H}^{\top} is the subscone (injective scone) of \mathbb{H} :

Co-lifting $(-)^{\top}$: Hey_{emb} \longrightarrow Hey_{SI}

Co-lifting can be extended to a functor $(-)^{\top}$: Hey_{emb} \longrightarrow Hey_{SI}.

Lemma

 $\mathbb{H}_1, \mathbb{H}_2$: Heyting algebras, $f: \mathbb{H}_1 \to \mathbb{H}_2$: Heyting homomorphism. If f is an embedding, then the natural extension $f^\top: \mathbb{H}_1^\top \to \mathbb{H}_2^\top$ is an opremum-preserving hom.

Quotient modulo the monolith $-/\mu$: Hey_{SI} \longrightarrow Hey_{emb}

Quotient modulo the monolith:

Lemma

 \mathbb{H} : an s.i. Heyting algebra.

 $(\mathbb{H}/\mu_{\mathbb{H}})^{\top} \cong \mathbb{H}.$

This can be extended to a functor $-/\mu : \mathsf{Hey}_{\mathsf{SI}} \longrightarrow \mathsf{Hey}_{\mathsf{emb}}.$

Lemma

 $\mathbb{H}_1, \mathbb{H}_2$: s.i. Heyting algebras, $f: \mathbb{H}_1 \to \mathbb{H}_2$ Heyting homomorphism, If f preserves the opremum, then there is $f': \mathbb{H}_1/\mu_{\mathbb{H}_1} \rightarrowtail \mathbb{H}_2/\mu_{\mathbb{H}_2}$.

Consequence

Definition

Hey_{emb}: the category of Heyting algebras and embeddings.

 $\mathsf{Hey}_{\mathsf{SI}}$: the category of s.i. Heyting algebras and opremum-preserving homomorphisms.

Theorem

 $\mathsf{Hey}_{\mathsf{emb}} \cong \mathsf{Hey}_{\mathsf{SI}}$.

Outline

- Introduction
- 2 Basic Definitions
- 3 Co-lifting of Heyting Algebras
- 4 S4 analogue of co-lifting

S4 analogue of co-lifting

Definition

 $\mathsf{Bool}^\mathsf{nt}_\mathsf{emb}$: the category of non-trivial Boolean algebras and embeddings.

Here, we will show the following equivalence and commutativity (up-to-iso) of the diagram:

• construction: S4-analogue of co-lifting $(-)^{\top}$

Definition

 \mathbb{I} : a non-trivial Boolean algebra, $\mathbb{B} = \langle \mathbb{B}, \square_B \rangle$: an S4 algebra. Let $\mathbb{I} \bullet \mathbb{B} := \langle \mathbb{I} \times \mathbb{B}, \square \rangle$ where $\square : I \times B \to I \times B$ is defined by

$$\square \langle i, a
angle = egin{cases} \langle 1_{\mathbb{I}}, 1_{\mathbb{B}}
angle & \langle i, a
angle = \langle 1_{\mathbb{I}}, 1_{\mathbb{B}}
angle \ \langle 0_{\mathbb{I}}, \square_{\mathcal{B}} a
angle & o.w. \end{cases}$$

• construction: S4-analogue of co-lifting $(-)^{\top}$

Lemma

I: a non-trivial Boolean algebra, B: an S4 algebra.

 $\mathbb{I} \bullet \mathbb{B} \text{ is an s.i. S4 algebra with } Op(\mathbb{I} \bullet \mathbb{B}) = \{\langle i, 1_{\mathbb{B}} \rangle \mid i \in \mathbb{I} \setminus \{1_{\mathbb{I}}\}\}$

Lemma

I: a non-trivial Boolean algebra, B: an S4 algebra.

$$(\mathbb{I} \bullet \mathbb{B})/\mu_{\mathbb{I} \bullet \mathbb{B}} \cong \mathbb{B}$$

Decomposition into • algebra

Lemma

B: an s.i. S4 algebra.

 $\mathbb{I}_{\mathbb{B}} \bullet (\mathbb{B}/\mu_{\mathbb{B}}) \cong \mathbb{B}$ where the Boolean algebra $\mathbb{I}_{\mathbb{B}}$ is defined by

- base set $I_{\mathbb{B}} := Op(\mathbb{B}) \cup \{1_{\mathbb{B}}\}$
- ullet $\wedge, \vee, 1_{\mathbb{I}}$ are same as those of \mathbb{B}
- \bullet $-i = -_{\mathbb{B}}i \vee \star_{\mathbb{B}}$
- ullet $0_{\mathbb{I}}=\star_{\mathbb{B}}$

Consequence

Definition

Bool^{nt}_{emb}: the category of non-trivial Boolean algebras and embeddings.

 $S4_{emb}$: the category of S4 algebras and embeddings.

 $S4_{SI}$: the category of s.i. S4 algebras and opremum-preserving homomorphisms.

Commutativity of co-lifting and Kleisli construction

Lemma

 ${\mathbb I}$: a non-trivial Boolean algebra, ${\mathbb B}$: an S4 algebra.

$$(\mathbb{I} \bullet \mathbb{B})_{\square} \cong (\mathbb{B}_{\square})^{\top}.$$

Remark: \mathbb{B}_{\square} is same as a sublattice of \mathbb{B} that consists of box-stable elements $\{a \in \mathbb{B} \mid \square a = a\}$ (i.e. EM-cat. of $\langle \mathbb{B}, \square \rangle$).

Summary

- We refined the co-lifting of Heyting algebras (appeared in Wrónski 1973) as a categorical equivalence,
- proposed the construction as S4 analogue of co-lifting,
- and showed correspondence of co-lifting and construction via the Kleisli construction.

Application

Theorem (Wrónski, 1973)

There are 2^{ω} intermediate logics having the disjunction property (DP).

There is a map $\tau : \textbf{Ext}(Int) \to \textbf{NExt}(S4)$ preserving the disjunction property. So, as an immediate consequence of Wrónski's theorem, we get:

Corollary

There are 2^{ω} extensions of the modal logic S4 with the disjunction property.

As an application of our work, we get new logics with DP:

Proposition (new result)

There are infinitely many extensions of S4 which have the disjunction property and cannot be expressed as τL .