Implicit Complexity and Formal Proofs
H. Férée & S. Hym & M. Mayero & J.-Y. Moyen & D. Nowak
Jean-Yves.Moyen@lipn.univ-parisl3.fr

School of Computing, University of Kent, United Kingdom
CRIStAL, CNRS & University of Lille, France
LIPN, University of Paris 13, France

October 10-11 2018

R

Jean-Yves.Moyen@lipn.univ-paris13.fr

What is this talk about?

e Formal proof in Coq of the P-criterion: “PPO + QI = PTIME”.

e Tool, integrated with Coq, to help show that a program satisfies
the P-criterion.

@ Some tricks and learning that could be useful for further similar
projects.

R

Motivation: Cryptography

The need for formal proofs

e Cryptography needs to prove security of its protocols.

o “Paper” proofs are often discovered wrong a few year later.
Formal proofs are needed.

R

The need for formal proofs

o Cryptography needs to prove security of its protocols.

o “Paper” proofs are often discovered wrong a few year later.
Formal proofs are needed.

@ Security:
Adversary gives me 2 plain texts. I randomly chose one and
encrypt it. Adversary guesses which one.
Protocol is secure if Adversary guesses correctly with probability 0.5

R

The need for formal proofs

o Cryptography needs to prove security of its protocols.

o “Paper” proofs are often discovered wrong a few year later.
Formal proofs are needed.

e Security:
Adversary gives me 2 plain texts. I randomly chose one and
encrypt it. Adversary guesses which one.
Protocol is secure if Adversary guesses correctly with probability 0.5

o Against all Adversaries? No! PTIME Adversaries are enough.

e Formal proof of security needs to quantify “For all adversaries
running in polynomial time”.

R

The need for ICC

“For all adversaries running in polynomial time”
e Formalise polynomial Turing Machines?

o =3 = E 9Dae
FHMMN QI+Coq

The need for ICC

“For all adversaries running in polynomial time”

e Formalise polynomial Turing Machines?
» Not that uniform definition (number of tapes, heads, ...)
» Need to handle clocks and bounds.
» Extremely hard to actually program an adversary (or the
algorithm).
» ICC provides nice, machine-free, somewhat expressive
characterisations of PTIME.

Ry

A long term Work

e Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].

o =3 = E 9Dae
FHMMN QI+Coq

A long term Work

e Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].

» Still very hard to program. .. (Binary addition takes 3 pages in
H. Rose’s classical book on Primitive recursion).

e G

A long term Work

e Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].

» Still very hard to program. .. (Binary addition takes 3 pages in
H. Rose’s classical book on Primitive recursion).

e Shonan meeting organised by D. Nowak (2013).

» Quasi-Interpretations offer a good mix between expressivity and
simplicity.

e G

A long term Work

e Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].

» Still very hard to program. .. (Binary addition takes 3 pages in
H. Rose’s classical book on Primitive recursion).

e Shonan meeting organised by D. Nowak (2013).
» Quasi-Interpretations offer a good mix between expressivity and
simplicity.
e Presentation of a preliminary version of this work [Dice 2016].

» Only soundness was proved.
» No really interesting example, poor tool (little automation).

e G

A long term Work

Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].

» Still very hard to program. .. (Binary addition takes 3 pages in
H. Rose’s classical book on Primitive recursion).

e Shonan meeting organised by D. Nowak (2013).

» Quasi-Interpretations offer a good mix between expressivity and
simplicity.

Presentation of a preliminary version of this work [Dice 2016].

» Only soundness was proved.
» No really interesting example, poor tool (little automation).

Conference paper in the formal proofs community [CPP 2018].

e G

The tool

Motivating example

Modular exponentiation: expmod(z,y, m) = z¥[m]

@ Central in many modern cryptographic algorithms.
@ Polynomiality is not trivial and needs careful use of the modulo.

e 30 function symbols, 110 rules.

R

Modular exponentiation: the good parts

o Interface module, writing TRS is (arguably) easy.

e Rules are mostly obtained by extraction from (proven) Coq code.
Very little adhoc code.

e Code is proven semantically correct.
e Termination by PPO is entirely automatic.

e Finding QIs is incremental, guided, and supported by the proof
assistant (use of full Arithmetic to prove inequalities between
polynomials). Most rules are solved by a couple of tactics leaving
only the burden of finding the QI to the user.

R

Modular exponentiation: the bad parts

@ Need to add some “clock” arguments, with no computational use,
just to ensure bounds.

@ These arguments are only needed when the function is re-used.
Without them, a QI can be found but is too big for re-use.

e Thus, compositionality is not really achieved.

Y

Demo time!

The proof

From Paper to Formal: ICC

Usually, in ICC:

e Soundness proofs are hard (need to carefully craft a bound on the
programs). Thus somewhat detailed.

e Completeness proofs are easy (need to show that a previous
system is contained in the new one). Thus often extremely short.

S I

From Paper to Formal: 1CC

Usually, in ICC:

e Soundness proofs are hard (need to carefully craft a bound on the
programs). Thus somewhat detailed.

e Completeness proofs are easy (need to show that a previous
system is contained in the new one). Thus often extremely short.

Here, on paper, completeness is usually: “It is easy to see that each
function in B is ordered by M PO'. Then Lemma 4.1 of [2] provides a
quasi-interpretation” (LPAR’01).

e Obviously far from Formal proof.
@ Actually not really correct.

@ Still easier than proof of soundness.

S I

From Paper to Formal: the long way
LMPO).

e Original proof (LPAR’01): around 3 pages of proof (reduction to

o =3 = E 9Dae
FHMMN QI+Coq

From Paper to Formal: the long way

e Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

e Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

R W

From Paper to Formal: the long way

e Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

e Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register

machines).
e With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

R W

From Paper to Formal: the long way

e Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

e Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

e With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).
o “Master 2 level” detailed proof: around 35 (soundness) + 3

(completeness) pages of proof (several “obvious” results still have
no proof).

R W

From Paper to Formal: the long way

e Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

e Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

e With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

o “Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof).

e Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

R Y

From Paper to Formal: the long way

e Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

e Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

e With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

o “Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof). (less than 6000 lines of IATEX)

e Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

R Y

The formal result

@ Soundness:

o COmplet oress:

FHMMN QL+ Coq

The formal result

@ Soundness:

» bound on the size of the full derivation tree of the evaluation of a
term, including all caches at all levels.

» QIs are not bounded a priori but the bound depends on the QI
(hence polynomial bound with polynomial QI).

o Completeness:

S

The formal result

@ Soundness:

» bound on the size of the full derivation tree of the evaluation of a
term, including all caches at all levels.

» QIs are not bounded a priori but the bound depends on the QI
(hence polynomial bound with polynomial QI).

o Completeness:

» Reduction from the previous proof of BC.

» Every BC program can be translated into a TRS that satisfies the
P-criterion.

» Still missing a proof of (semantic) correctness of the translation.

S

Some difficulties in the
proof

OBV

ti)
z z (Constructor)

C(t17 ,tn)¢ C(U:L,.."Un

3,1, ¢ T(C)

t; | V; (v, .
f(tL ’ 7tn) \L v
oceS Do = Ui

(o,

v
(Split)
£(p1,...,pn) 2T EE
ro U
! (Update)
ey ’Un) J/ |
(=] = . E)

CBV with cache (memoisation)

(Cic1,ti) ¥ (Ciyvi)
(Co,c(try .. stn)) U (Cn,c(vr,...,vp))

3, t; € T(C)
(Ci—1,t) ¥ (Ci,v) (Cryf(v1,...,v0)) I (Cov)

(Constructor)

Split
(Cort(trs-rtn) ¥ (Cr0) (oo
(f(v1,...,0p),0) €C (Read)
(C,f(v1,...,vp)) 4 (C,v)
Pu/ (£(vi,...,v0),u) €C £(p1,...,pp) =1 EE
ce® po=v (C,ro)l (D,v) (Update)

(C 5 (v1,. .., vp)) <DU{;Un),«u)},v>

FHMMN QI+Coq Elica’l8

17 /27

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

R

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti v
c(ty,... ty) dc(v,...,vn)

(Constructor)

R

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti v
c(ty,... ty) dc(v,...,vn)

Is represented by the constructor

(Constructor)

| cbv_constr : list cbv — term — value — cbv

FHMMN QI+Coq

Elica’l8 18 /27

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti v
c(ty,... ty) dc(v,...,vn)

Is represented by the constructor

(Constructor)

| cbv_constr : list cbv — term — value — cbv

corresponding to the “rule”

cbv_constr [...m;...] t v = ——— (Constructor)
tlo

Elica’l8 18 /27

Semantic Derivations must be well-formed

LT
cbv_constr [...mi...]tv=

t

(Constructor)
v

o = = = Dae
FHMMN QI+Coq

Semantic Derivations must be well-formed

cbv_constr [...m;...] t v = ——— (Constructor)

tlo
Additional predicate:

cbv_constr 7l (capply c 1t) (c_capply ¢’ 1v) =
! pply pply

andl (map wf 71)A ¢ = ¢’ A

1t = map proj_left 71 A 1lv = map proj_right w1l

S

Semantic Derivations must be well-formed

cbv_constr [...m;...] t v = ——— (Constructor)
tlo
Additional predicate:

cbv_constr 7l (capply c 1t) (c_capply ¢’ 1v) =
! pply pply

andl (map wf 71)A ¢ = ¢’ A

1t = map proj_left 71 A 1lv = map proj_right w1l

All theorems look like:
V...

let pi := (cbv_update ...) in
wf pi —

FHMMN QI+Coq

Elica’l8 19 /27

Semantic Derivations must be well-formed

cbv_constr [...m;...] t v = ——— (Constructor)
tlo
Additional predicate:

cbv_constr 7l (capply c 1t) (c_capply ¢’ 1v) =
! pply pply

andl (map wf 71)A ¢ = ¢’ A
1t = map proj_left 71 A 1lv = map proj_right w1l
All theorems look like:

v...
let pi := (cbv_update ...) in
wf pi —

(Similar to Proof Structure vs Proof Nets)

FHMMN QI+Coq

Elica’l8 19 /27

Handling the existential quantifier

tilv £,

tn) b

f(tl,

Sy Un) LU

(Split)

o = = = Dae
FHMMN QI+Coq

Handling the existential quantifier

3j,t; ¢ T(C)

t; L v
f(ty,

f(vr,...,on) b v
stn) dv
In effect, this means that (Split) must be followed by (Functions).

(Split)

o = = = Dae
FHMMN QI+Coq

Handling the existential quantifier

Hj,tj ¢TC) tilv f(vr,. vp) Lo
f(t],...,tn) \LU

In effect, this means that (Split) must be followed by (Functions).
Adding the well-formed check:

(Split)

| cbv_split 1 (cbv_function ...)(fapply £ 1t) v/ = ...

S

Handling the existential quantifier

Hj,tj ¢ T(C) ti | v; f(?' n))

f(t1,...,tn)¢v

In effect, this means that (Split) must be followed by (Functions).
Adding the well-formed check:

(Split)

| cbv_split 1 (cbv_function ...)(fapply £ 1t) v/ = ...
This corresponds to defining the semantics with a “double rule”

f(p1,...,pn) 2>r€€ 0c€6 po=v; rolv

(F)
tiivi f(’l)h...,/b‘»n,) ilU
(S)
f(tla SRR t’n,) \lf v

Elica’l8 20 /27

Big Step Induction

e Paper proofs rely on “call trees”, or a ~~ relation, which amounts
to only keeping the (Update) and (Read) rules (the rest is
bookkeeping for finding the leftmost outermost redex).

e Building these in Coq would be tedious (plus need an extra layer
of correction lemmas).

S L

Big Step Induction

e Paper proofs rely on “call trees”, or a ~~ relation, which amounts
to only keeping the (Update) and (Read) rules (the rest is
bookkeeping for finding the leftmost outermost redex).

e Building these in Coq would be tedious (plus need an extra layer
of correction lemmas).

o Instead, we prove a “big step” induction lemma:

[V.J, (VI J ~ H = P(Il)) = P(J))] = VI, P()

Lemma cbv_big_induction :
VY (P : cbv — Prop),

v 7J,
(V H, H € (first_activations J) — P H) — P J) —
VI,PTI.

S L

Replacing automatic induction

Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

S

Replacing automatic induction

Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...
| capply: constructor — list term — term

S

Replacing automatic induction

Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...
| capply: constructor — list term — term

Coq’s induction:

vV P,
(V ¢ 1t, P (capply c 1t)) —
Vt, Pt

Quantifying on all possible subterms is way too much, it is sufficient to
quantify on the “good” ones (that validate the predicate):

S

Replacing automatic induction

Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...
| capply: constructor — list term — term

Coq’s induction:

vV P,
(V ¢ 1t, P (capply c 1t)) —
Vt, Pt

Quantifying on all possible subterms is way too much, it is sufficient to
quantify on the “good” ones (that validate the predicate):

v P,
Mclt, (Vt, t €1t - Pt) = P (capply c 1t)) —
Vt, Pt

S

Completeness: from PR to TRS

@ The class BC, both in paper and in previous formal proof, is
defined with a “Primitive Recursive” syntax:

REC(PR0Jo 1,1, COMP(SUCCs¢¢, [], [PROJ123]),

COMP(SUCCyy, [|, [PROJ1,23]))

R

Completeness: from PR to TRS

@ The class BC, both in paper and in previous formal proof, is
defined with a “Primitive Recursive” syntax:

REC(PR0Jo 1,1, COMP(SUCCs¢¢, [], [PROJ123]),

COMP(SUCCyy, [|, [PROJ1,23]))

e We need to turn that into a Term Rewriting System (7 function
symbols and 10 rules).

e Main (Coq) difficulty: create new function symbols. Using integers
is nice but need to keep a global “first available integer”.

» Solution: use a state monad for translation.

R

Completeness: handling induction

e Hard case in inductive proofs is composition, because it’s
unbounded composition (need to handle list of subterms).

@ We need delicate lemmas to ensure that we correctly handle the
premises.

Proposition BC_to_TRS_func_bounds bc st f:
let trs := snd (BC_to_TRS bc st) in

f € all_lhs_funcs trs —

trs. (first) < f < trs.(last).

R W

Conclusion

Conclusion

e Formal proof is a lot of work.
» Filling in many, many small gaps.
» Stating and proving some “obvious but hard to prove” lemmas.
» Correcting errors in the proof.

e Hopefully, ideas or some proofs can be reused by others.

e Tool with a good level of automation.

S

Questions? ...or Cake

(hopefully inclusive)

	Motivation: Cryptography
	The tool
	Demo time!
	The proof
	Some difficulties in the proof
	Conclusion
	Questions? …or Cake (hopefully inclusive)

