
Implicit Complexity and Formal Proofs

H. Férée & S. Hym & M. Mayero & J.-Y. Moyen & D. Nowak
Jean-Yves.Moyen@lipn.univ-paris13.fr

School of Computing, University of Kent, United Kingdom
CRIStAL, CNRS & University of Lille, France

LIPN, University of Paris 13, France

October 10-11 2018

FHMMN QI+Coq Elica’18 1 / 27

Jean-Yves.Moyen@lipn.univ-paris13.fr

What is this talk about?

Formal proof in Coq of the P-criterion: “PPO + QI ≡ Ptime”.

Tool, integrated with Coq, to help show that a program satisfies
the P-criterion.

Some tricks and learning that could be useful for further similar
projects.

FHMMN QI+Coq Elica’18 2 / 27

Motivation: Cryptography

The need for formal proofs

Cryptography needs to prove security of its protocols.

“Paper” proofs are often discovered wrong a few year later.
Formal proofs are needed.

Security:
Adversary gives me 2 plain texts. I randomly chose one and
encrypt it. Adversary guesses which one.
Protocol is secure if Adversary guesses correctly with probability 0.5

Against all Adversaries? No! Ptime Adversaries are enough.

Formal proof of security needs to quantify “For all adversaries
running in polynomial time”.

FHMMN QI+Coq Elica’18 4 / 27

The need for formal proofs

Cryptography needs to prove security of its protocols.

“Paper” proofs are often discovered wrong a few year later.
Formal proofs are needed.

Security:
Adversary gives me 2 plain texts. I randomly chose one and
encrypt it. Adversary guesses which one.
Protocol is secure if Adversary guesses correctly with probability 0.5

Against all Adversaries? No! Ptime Adversaries are enough.

Formal proof of security needs to quantify “For all adversaries
running in polynomial time”.

FHMMN QI+Coq Elica’18 4 / 27

The need for formal proofs

Cryptography needs to prove security of its protocols.

“Paper” proofs are often discovered wrong a few year later.
Formal proofs are needed.

Security:
Adversary gives me 2 plain texts. I randomly chose one and
encrypt it. Adversary guesses which one.
Protocol is secure if Adversary guesses correctly with probability 0.5

Against all Adversaries? No! Ptime Adversaries are enough.

Formal proof of security needs to quantify “For all adversaries
running in polynomial time”.

FHMMN QI+Coq Elica’18 4 / 27

The need for ICC

“For all adversaries running in polynomial time”

Formalise polynomial Turing Machines?

I Not that uniform definition (number of tapes, heads, . . .)
I Need to handle clocks and bounds.
I Extremely hard to actually program an adversary (or the

algorithm).
I ICC provides nice, machine-free, somewhat expressive

characterisations of Ptime.

FHMMN QI+Coq Elica’18 5 / 27

The need for ICC

“For all adversaries running in polynomial time”

Formalise polynomial Turing Machines?
I Not that uniform definition (number of tapes, heads, . . .)
I Need to handle clocks and bounds.
I Extremely hard to actually program an adversary (or the

algorithm).
I ICC provides nice, machine-free, somewhat expressive

characterisations of Ptime.

FHMMN QI+Coq Elica’18 5 / 27

A long term Work

Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].

I Still very hard to program. . . (Binary addition takes 3 pages in
H. Rose’s classical book on Primitive recursion).

Shonan meeting organised by D. Nowak (2013).
I Quasi-Interpretations offer a good mix between expressivity and

simplicity.

Presentation of a preliminary version of this work [Dice 2016].
I Only soundness was proved.
I No really interesting example, poor tool (little automation).

Conference paper in the formal proofs community [CPP 2018].

FHMMN QI+Coq Elica’18 6 / 27

A long term Work

Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].
I Still very hard to program. . . (Binary addition takes 3 pages in

H. Rose’s classical book on Primitive recursion).

Shonan meeting organised by D. Nowak (2013).
I Quasi-Interpretations offer a good mix between expressivity and

simplicity.

Presentation of a preliminary version of this work [Dice 2016].
I Only soundness was proved.
I No really interesting example, poor tool (little automation).

Conference paper in the formal proofs community [CPP 2018].

FHMMN QI+Coq Elica’18 6 / 27

A long term Work

Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].
I Still very hard to program. . . (Binary addition takes 3 pages in

H. Rose’s classical book on Primitive recursion).

Shonan meeting organised by D. Nowak (2013).
I Quasi-Interpretations offer a good mix between expressivity and

simplicity.

Presentation of a preliminary version of this work [Dice 2016].
I Only soundness was proved.
I No really interesting example, poor tool (little automation).

Conference paper in the formal proofs community [CPP 2018].

FHMMN QI+Coq Elica’18 6 / 27

A long term Work

Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].
I Still very hard to program. . . (Binary addition takes 3 pages in

H. Rose’s classical book on Primitive recursion).

Shonan meeting organised by D. Nowak (2013).
I Quasi-Interpretations offer a good mix between expressivity and

simplicity.

Presentation of a preliminary version of this work [Dice 2016].
I Only soundness was proved.
I No really interesting example, poor tool (little automation).

Conference paper in the formal proofs community [CPP 2018].

FHMMN QI+Coq Elica’18 6 / 27

A long term Work

Formalisation of Bellantoni&Cook system [Heraud&Nowak, 2011].
I Still very hard to program. . . (Binary addition takes 3 pages in

H. Rose’s classical book on Primitive recursion).

Shonan meeting organised by D. Nowak (2013).
I Quasi-Interpretations offer a good mix between expressivity and

simplicity.

Presentation of a preliminary version of this work [Dice 2016].
I Only soundness was proved.
I No really interesting example, poor tool (little automation).

Conference paper in the formal proofs community [CPP 2018].

FHMMN QI+Coq Elica’18 6 / 27

The tool

Motivating example

Modular exponentiation: expmod(x, y,m) = xy[m]

Central in many modern cryptographic algorithms.

Polynomiality is not trivial and needs careful use of the modulo.

30 function symbols, 110 rules.

FHMMN QI+Coq Elica’18 8 / 27

Modular exponentiation: the good parts

Interface module, writing TRS is (arguably) easy.

Rules are mostly obtained by extraction from (proven) Coq code.
Very little adhoc code.

Code is proven semantically correct.

Termination by PPO is entirely automatic.

Finding QIs is incremental, guided, and supported by the proof
assistant (use of full Arithmetic to prove inequalities between
polynomials). Most rules are solved by a couple of tactics leaving
only the burden of finding the QI to the user.

FHMMN QI+Coq Elica’18 9 / 27

Modular exponentiation: the bad parts

Need to add some “clock” arguments, with no computational use,
just to ensure bounds.

These arguments are only needed when the function is re-used.
Without them, a QI can be found but is too big for re-use.

Thus, compositionality is not really achieved.

FHMMN QI+Coq Elica’18 10 / 27

Demo time!

The proof

From Paper to Formal: ICC

Usually, in ICC:

Soundness proofs are hard (need to carefully craft a bound on the
programs). Thus somewhat detailed.

Completeness proofs are easy (need to show that a previous
system is contained in the new one). Thus often extremely short.

Here, on paper, completeness is usually: “It is easy to see that each
function in B is ordered by MPO′. Then Lemma 4.1 of [2] provides a
quasi-interpretation” (LPAR’01).

Obviously far from Formal proof.

Actually not really correct.

Still easier than proof of soundness.

FHMMN QI+Coq Elica’18 13 / 27

From Paper to Formal: ICC

Usually, in ICC:

Soundness proofs are hard (need to carefully craft a bound on the
programs). Thus somewhat detailed.

Completeness proofs are easy (need to show that a previous
system is contained in the new one). Thus often extremely short.

Here, on paper, completeness is usually: “It is easy to see that each
function in B is ordered by MPO′. Then Lemma 4.1 of [2] provides a
quasi-interpretation” (LPAR’01).

Obviously far from Formal proof.

Actually not really correct.

Still easier than proof of soundness.

FHMMN QI+Coq Elica’18 13 / 27

From Paper to Formal: the long way

Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

“Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof).

Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

FHMMN QI+Coq Elica’18 14 / 27

From Paper to Formal: the long way

Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

“Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof).

Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

FHMMN QI+Coq Elica’18 14 / 27

From Paper to Formal: the long way

Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

“Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof).

Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

FHMMN QI+Coq Elica’18 14 / 27

From Paper to Formal: the long way

Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

“Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof).

Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

FHMMN QI+Coq Elica’18 14 / 27

From Paper to Formal: the long way

Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

“Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof).

Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

FHMMN QI+Coq Elica’18 14 / 27

From Paper to Formal: the long way

Original proof (LPAR’01): around 3 pages of proof (reduction to
LMPO).

Independent proof (TCS’11): around 6 (soundness) + 2
(completeness) pages of proof (reduction from parallel register
machines).

With improved semantics (MSCS’12): around 4 pages of proof
(soundness), many details skipped (not the main goal).

“Master 2 level” detailed proof: around 35 (soundness) + 3
(completeness) pages of proof (several “obvious” results still have
no proof). (less than 6000 lines of LATEX)

Coq proof: around 16000 (non-empty) lines of code (completeness:
around 3000 lines). . .

FHMMN QI+Coq Elica’18 14 / 27

The formal result

Soundness:

I bound on the size of the full derivation tree of the evaluation of a
term, including all caches at all levels.

I QIs are not bounded a priori but the bound depends on the QI
(hence polynomial bound with polynomial QI).

Completeness:

I Reduction from the previous proof of BC.
I Every BC program can be translated into a TRS that satisfies the

P-criterion.
I Still missing a proof of (semantic) correctness of the translation.

FHMMN QI+Coq Elica’18 15 / 27

The formal result

Soundness:
I bound on the size of the full derivation tree of the evaluation of a

term, including all caches at all levels.
I QIs are not bounded a priori but the bound depends on the QI

(hence polynomial bound with polynomial QI).

Completeness:

I Reduction from the previous proof of BC.
I Every BC program can be translated into a TRS that satisfies the

P-criterion.
I Still missing a proof of (semantic) correctness of the translation.

FHMMN QI+Coq Elica’18 15 / 27

The formal result

Soundness:
I bound on the size of the full derivation tree of the evaluation of a

term, including all caches at all levels.
I QIs are not bounded a priori but the bound depends on the QI

(hence polynomial bound with polynomial QI).

Completeness:
I Reduction from the previous proof of BC.
I Every BC program can be translated into a TRS that satisfies the

P-criterion.
I Still missing a proof of (semantic) correctness of the translation.

FHMMN QI+Coq Elica’18 15 / 27

Some difficulties in the
proof

CBV

with cache (memoisation)

〈Ci−1,

ti

〉

↓

⇓ 〈Ci,

vi

〉

(Constructor)

〈C0,

c(t1, . . . , tn)

〉

↓

⇓ 〈Cn,

c(v1, . . . , vn)

〉

∃j, tj /∈ T (C)

〈Ci−1,

ti

〉

↓

⇓ 〈Ci,

vi

〉 〈Cn,

f(v1, . . . , vn)

〉

↓

⇓ 〈C,

v

〉

(Split)

〈C0,

f(t1, . . . , tn)

〉

↓

⇓ 〈C,

v

〉
(f(v1, . . . , vn), v) ∈ C

(Read)
〈C, f(v1, . . . , vn)〉↓

⇓

〈C, v〉

@u/ (f(v1, . . . , vn), u) ∈ C

f(p1, . . . , pn)→ r ∈ E
σ ∈ S piσ = vi

〈C,

rσ

〉

↓

⇓ 〈D,

v

〉

== (Update)

〈C,

f(v1, . . . , vn)

〉

↓

⇓
〈
D
⋃
{(f(v1, . . . , vn), v)} ,

v

〉

FHMMN QI+Coq Elica’18 17 / 27

CBV with cache (memoisation)

〈Ci−1, ti〉 ⇓ 〈Ci, vi〉
(Constructor)

〈C0, c(t1, . . . , tn)〉 ⇓ 〈Cn, c(v1, . . . , vn)〉

∃j, tj /∈ T (C)
〈Ci−1, ti〉 ⇓ 〈Ci, vi〉 〈Cn, f(v1, . . . , vn)〉 ⇓ 〈C, v〉

(Split)
〈C0, f(t1, . . . , tn)〉 ⇓ 〈C, v〉

(f(v1, . . . , vn), v) ∈ C
(Read)

〈C, f(v1, . . . , vn)〉 ⇓ 〈C, v〉

@u/ (f(v1, . . . , vn), u) ∈ C f(p1, . . . , pn)→ r ∈ E
σ ∈ S piσ = vi 〈C, rσ〉 ⇓ 〈D, v〉

== (Update)
〈C, f(v1, . . . , vn)〉 ⇓

〈
D
⋃
{(f(v1, . . . , vn), v)} , v

〉
FHMMN QI+Coq Elica’18 17 / 27

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti ↓ vi
(Constructor)

c(t1, . . . , tn) ↓ c(v1, . . . , vn)

Is represented by the constructor

| cbv constr : list cbv → term → value → cbv

corresponding to the “rule”

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

FHMMN QI+Coq Elica’18 18 / 27

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti ↓ vi
(Constructor)

c(t1, . . . , tn) ↓ c(v1, . . . , vn)

Is represented by the constructor

| cbv constr : list cbv → term → value → cbv

corresponding to the “rule”

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

FHMMN QI+Coq Elica’18 18 / 27

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti ↓ vi
(Constructor)

c(t1, . . . , tn) ↓ c(v1, . . . , vn)

Is represented by the constructor

| cbv constr : list cbv → term → value → cbv

corresponding to the “rule”

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

FHMMN QI+Coq Elica’18 18 / 27

How to represent a derivation proof tree?

Inductive type, but “side” conditions are hard to enforce directly and
are checked a posteriori with a well formed property.

ti ↓ vi
(Constructor)

c(t1, . . . , tn) ↓ c(v1, . . . , vn)

Is represented by the constructor

| cbv constr : list cbv → term → value → cbv

corresponding to the “rule”

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

FHMMN QI+Coq Elica’18 18 / 27

Semantic Derivations must be well-formed

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

Additional predicate:

| cbv constr πl (capply c lt) (c capply c′ lv) ⇒

andl (map wf πl) ∧ c = c′ ∧

lt = map proj left πl ∧ lv = map proj right πl

All theorems look like:

∀...
let pi := (cbv_update ...) in

wf pi →
...

(Similar to Proof Structure vs Proof Nets)

FHMMN QI+Coq Elica’18 19 / 27

Semantic Derivations must be well-formed

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

Additional predicate:

| cbv constr πl (capply c lt) (c capply c′ lv) ⇒

andl (map wf πl) ∧ c = c′ ∧

lt = map proj left πl ∧ lv = map proj right πl

All theorems look like:

∀...
let pi := (cbv_update ...) in

wf pi →
...

(Similar to Proof Structure vs Proof Nets)

FHMMN QI+Coq Elica’18 19 / 27

Semantic Derivations must be well-formed

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

Additional predicate:

| cbv constr πl (capply c lt) (c capply c′ lv) ⇒

andl (map wf πl) ∧ c = c′ ∧

lt = map proj left πl ∧ lv = map proj right πl

All theorems look like:

∀...
let pi := (cbv_update ...) in

wf pi →
...

(Similar to Proof Structure vs Proof Nets)

FHMMN QI+Coq Elica’18 19 / 27

Semantic Derivations must be well-formed

cbv constr [. . . πi . . .] t v =
. . . πi . . .

(Constructor)
t ↓ v

Additional predicate:

| cbv constr πl (capply c lt) (c capply c′ lv) ⇒

andl (map wf πl) ∧ c = c′ ∧

lt = map proj left πl ∧ lv = map proj right πl

All theorems look like:

∀...
let pi := (cbv_update ...) in

wf pi →
...

(Similar to Proof Structure vs Proof Nets)

FHMMN QI+Coq Elica’18 19 / 27

Handling the existential quantifier

∃j, tj /∈ T (C)

ti ↓ vi f(v1, . . . , vn) ↓ v
(Split)

f(t1, . . . , tn) ↓ v

In effect, this means that (Split) must be followed by (Functions).
Adding the well-formed check:

| cbv split l (cbv function . . .)(fapply f′ lt) v′ ⇒ . . .

This corresponds to defining the semantics with a “double rule”

ti ↓ vi

f(p1, . . . , pn)→ r ∈ E σ ∈ S piσ = vi rσ ↓ v
====================================== (F)

f(v1, . . . , vn) ↓ v
(S)

f(t1, . . . , tn) ↓ v

FHMMN QI+Coq Elica’18 20 / 27

Handling the existential quantifier

∃j, tj /∈ T (C) ti ↓ vi f(v1, . . . , vn) ↓ v
(Split)

f(t1, . . . , tn) ↓ v
In effect, this means that (Split) must be followed by (Functions).

Adding the well-formed check:

| cbv split l (cbv function . . .)(fapply f′ lt) v′ ⇒ . . .

This corresponds to defining the semantics with a “double rule”

ti ↓ vi

f(p1, . . . , pn)→ r ∈ E σ ∈ S piσ = vi rσ ↓ v
====================================== (F)

f(v1, . . . , vn) ↓ v
(S)

f(t1, . . . , tn) ↓ v

FHMMN QI+Coq Elica’18 20 / 27

Handling the existential quantifier

∃j, tj /∈ T (C) ti ↓ vi f(v1, . . . , vn) ↓ v
(Split)

f(t1, . . . , tn) ↓ v
In effect, this means that (Split) must be followed by (Functions).
Adding the well-formed check:

| cbv split l (cbv function . . .)(fapply f′ lt) v′ ⇒ . . .

This corresponds to defining the semantics with a “double rule”

ti ↓ vi

f(p1, . . . , pn)→ r ∈ E σ ∈ S piσ = vi rσ ↓ v
====================================== (F)

f(v1, . . . , vn) ↓ v
(S)

f(t1, . . . , tn) ↓ v

FHMMN QI+Coq Elica’18 20 / 27

Handling the existential quantifier

∃j, tj /∈ T (C) ti ↓ vi f(v1, . . . , vn) ↓ v
(Split)

f(t1, . . . , tn) ↓ v
In effect, this means that (Split) must be followed by (Functions).
Adding the well-formed check:

| cbv split l (cbv function . . .)(fapply f′ lt) v′ ⇒ . . .

This corresponds to defining the semantics with a “double rule”

ti ↓ vi

f(p1, . . . , pn)→ r ∈ E σ ∈ S piσ = vi rσ ↓ v
====================================== (F)

f(v1, . . . , vn) ↓ v
(S)

f(t1, . . . , tn) ↓ v

FHMMN QI+Coq Elica’18 20 / 27

Big Step Induction

Paper proofs rely on “call trees”, or a relation, which amounts
to only keeping the (Update) and (Read) rules (the rest is
bookkeeping for finding the leftmost outermost redex).

Building these in Coq would be tedious (plus need an extra layer
of correction lemmas).

Instead, we prove a “big step” induction lemma:[
∀J̃ ,

(
(∀H̃, J̃ H̃ ⇒ P (H̃))⇒ P (J̃)

)]
⇒ ∀Ĩ , P (Ĩ)

Lemma cbv_big_induction :

∀ (P : cbv → Prop),

(∀ J,

(∀ H, H ∈ (first_activations J) → P H) → P J) →
∀ I, P I.

FHMMN QI+Coq Elica’18 21 / 27

Big Step Induction

Paper proofs rely on “call trees”, or a relation, which amounts
to only keeping the (Update) and (Read) rules (the rest is
bookkeeping for finding the leftmost outermost redex).

Building these in Coq would be tedious (plus need an extra layer
of correction lemmas).

Instead, we prove a “big step” induction lemma:[
∀J̃ ,

(
(∀H̃, J̃ H̃ ⇒ P (H̃))⇒ P (J̃)

)]
⇒ ∀Ĩ , P (Ĩ)

Lemma cbv_big_induction :

∀ (P : cbv → Prop),

(∀ J,

(∀ H, H ∈ (first_activations J) → P H) → P J) →
∀ I, P I.

FHMMN QI+Coq Elica’18 21 / 27

Replacing automatic induction
Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...

| capply: constructor → list term → term

Coq’s induction:

∀ P, ...

(∀ c lt, P (capply c lt)) →
∀ t, P t

Quantifying on all possible subterms is way too much, it is sufficient to
quantify on the “good” ones (that validate the predicate):

∀ P, ...

(∀ c lt, (∀ t, t ∈ lt → P t) → P (capply c lt)) →
∀ t, P t

FHMMN QI+Coq Elica’18 22 / 27

Replacing automatic induction
Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...

| capply: constructor → list term → term

Coq’s induction:

∀ P, ...

(∀ c lt, P (capply c lt)) →
∀ t, P t

Quantifying on all possible subterms is way too much, it is sufficient to
quantify on the “good” ones (that validate the predicate):

∀ P, ...

(∀ c lt, (∀ t, t ∈ lt → P t) → P (capply c lt)) →
∀ t, P t

FHMMN QI+Coq Elica’18 22 / 27

Replacing automatic induction
Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...

| capply: constructor → list term → term

Coq’s induction:

∀ P, ...

(∀ c lt, P (capply c lt)) →
∀ t, P t

Quantifying on all possible subterms is way too much, it is sufficient to
quantify on the “good” ones (that validate the predicate):

∀ P, ...

(∀ c lt, (∀ t, t ∈ lt → P t) → P (capply c lt)) →
∀ t, P t

FHMMN QI+Coq Elica’18 22 / 27

Replacing automatic induction
Coq automatically generates structural induction principle for
inductive types, but these were often not suitable for our needs.

Inductive Term: Type := ...

| capply: constructor → list term → term

Coq’s induction:

∀ P, ...

(∀ c lt, P (capply c lt)) →
∀ t, P t

Quantifying on all possible subterms is way too much, it is sufficient to
quantify on the “good” ones (that validate the predicate):

∀ P, ...

(∀ c lt, (∀ t, t ∈ lt → P t) → P (capply c lt)) →
∀ t, P t

FHMMN QI+Coq Elica’18 22 / 27

Completeness: from PR to TRS

The class BC, both in paper and in previous formal proof, is
defined with a “Primitive Recursive” syntax:

REC(PROJ0,1,1, COMP(SUCCff, [], [PROJ1,2,3]),

COMP(SUCCtt, [], [PROJ1,2,3]))

We need to turn that into a Term Rewriting System (7 function
symbols and 10 rules).

Main (Coq) difficulty: create new function symbols. Using integers
is nice but need to keep a global “first available integer”.

I Solution: use a state monad for translation.

FHMMN QI+Coq Elica’18 23 / 27

Completeness: from PR to TRS

The class BC, both in paper and in previous formal proof, is
defined with a “Primitive Recursive” syntax:

REC(PROJ0,1,1, COMP(SUCCff, [], [PROJ1,2,3]),

COMP(SUCCtt, [], [PROJ1,2,3]))

We need to turn that into a Term Rewriting System (7 function
symbols and 10 rules).

Main (Coq) difficulty: create new function symbols. Using integers
is nice but need to keep a global “first available integer”.

I Solution: use a state monad for translation.

FHMMN QI+Coq Elica’18 23 / 27

Completeness: handling induction

Hard case in inductive proofs is composition, because it’s
unbounded composition (need to handle list of subterms).

We need delicate lemmas to ensure that we correctly handle the
premises.

Proposition BC_to_TRS_func_bounds bc st f:

let trs := snd (BC_to_TRS bc st) in

f ∈ all_lhs_funcs trs →
trs.(first) ≤ f ≤ trs.(last).

FHMMN QI+Coq Elica’18 24 / 27

Conclusion

Conclusion

Formal proof is a lot of work.
I Filling in many, many small gaps.
I Stating and proving some “obvious but hard to prove” lemmas.
I Correcting errors in the proof.

Hopefully, ideas or some proofs can be reused by others.

Tool with a good level of automation.

FHMMN QI+Coq Elica’18 26 / 27

Questions? . . . or Cake
(hopefully inclusive)

	Motivation: Cryptography
	The tool
	Demo time!
	The proof
	Some difficulties in the proof
	Conclusion
	Questions? …or Cake (hopefully inclusive)

