From finite semantics to regular languages
(and beyond) in second-order linear logic

NcuyEn Lé Thanh Diing (a.k.a. Tito) — nltd@nguyentito.eu
Laboratoire d’informatique de Paris Nord (LIPN), Université Paris 13
joint work with Thomas SeiLLer (CNRS, LIPN)

ELICA project final meeting, Paris, October 11th, 2018

1/20

Implicit complexity with proofs-as-programs

Curry-Howard approach to implicit complexity:

1. Define logic / programming language

2. Bound evaluation complexity (soundness)

3. Show language expressivity (extensional completeness)

4. Result: set of expressible functions = some complexity class

Step 1 requires creativity. Examples from linear logic:
LLL ~» polytime (Girard), SBAL ~~ logspace (Schépp)...

2/20

Implicit complexity with proofs-as-programs

Curry-Howard approach to implicit complexity:

1. Define logic / programming language

2. Bound evaluation complexity (soundness)

3. Show language expressivity (extensional completeness)

4. Result: set of expressible functions = some complexity class

Step 1 requires creativity. Examples from linear logic:
LLL ~» polytime (Girard), SBAL ~~ logspace (Schépp)...

This talk: instead, ask (2)—(4) for well-known systems:
¢ simply typed A-calculus (STX)

¢ recall old methods and results
* and later Elementary Linear Logic (ELL)
* new results inspired by ST techniques

...or rather, (naturally) restricted situations within STA/ELL. /20

Simply-typed A-calculus and implicit complexity?

Recall k-EXPTIME = DTIME(tower of exponentials of height k),

ELEMENTARY = U k-EXPTIME.
keN

Claim: ST\ characterizes ELEMENTARY.

Parameter controlling complexity: functionality order
ord(a — () = max(ord(a) + 1,0rd(f))

* Soundness: Vk € N 3f(k) € N s.t. normalization of
A-terms with order < k subterms is in f(k)-EXPTIME

* Extensional completeness: naive attempt fails

3/20

Church encodings of inputs in ST\

Church (or Bchm-Berarducci) encodings:
e Forw € {0,1}*, w : Str[A] for any simple type A (meta-V)
o StrIA]=(A—A) - (A—A) > (A— A)
* W= /\f())\f])\xfw[o] (oG (]Cw[”,” x) 5o)
* Bool =0 — 0 — o (0 base type)

Choose a simple type A, and a term ¢ : Str[A] — Bool
— defines language L(t) = {w € {0,1}* | tw — true}.
Not all ELEMENTARY languages possible... but then what?

4/20

Church encodings of inputs in ST\

Church (or Bchm-Berarducci) encodings:
e Forw € {0,1}*, w : Str[A] for any simple type A (meta-V)
o StrIA|=A—-A) (A=A > (A— A)
* W= /\f())\f])\xfw[o] (oG (](;U[Hfl] x) 5o)
* Bool =0 — 0 — o (0 base type)

Choose a simple type A, and a term ¢ : Str[A] — Bool
— defines language L(t) = {w € {0,1}* | tw — true}.
Not all ELEMENTARY languages possible... but then what?
Theorem (Hillebrand & Kanellakis, LICS’96)
The languages decided by ST \-terms of type Str|{A] — Bool are
exactly the regular languages.

4/20

Regular languages in ST\

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any STA-term t : StrlA] — Bool, the language
L(t) = {w € {0,1}" [tw —7} true} is regular.

Part 1 of proof.
Fix type A. Any denotational semantics [—] quotients words:

w € {0,1}* ~ T : Str[A] ~ [@syy € [StrlA]]

When [—] non-trivial ([true] # [false]), [@]s;4) determines
behavior of w w.r.t. all Str[A] — Bool terms:

we L(t) <= tw—jtrue < [tw] = [t]([w]) = [true]
Goal: to decide L(t), compute w — [w] in some model of STA.

5/20

Regular languages in ST\

Theorem (Hillebrand & Kanellakis, LICS’96)
For any type A and any STA-term t : StrlA] — Bool, the language
L(t) = {w € {0,1}" [tw —7} true} is regular.

Part 2 of proof.
We use [—] : STA — FinSet to build a DFA with states
Q = [Str[A]], acceptation as [t](—) = [true].

we L) <= [t ([[@]]Strw) = [true] <= w accepted

— semantic evaluation argument. [
5/20

Regular languages in ST\

Theorem (Hillebrand & Kanellakis, LICS’96)

For any type A and any STA-term t : StrlA] — Bool, the language
L(t) = {w € {0,1}" [tw —7} true} is regular.

Part 2 of proof.

We use [—] : STA — FinSet to build a DFA with states

Q = [Str[A]], acceptation as [t](—) = [true].

(1Q] < o0, e.g. 22" when A = Bool)

we L) <= [t ([[@]]Strw) = [true] <= w accepted

— semantic evaluation argument. [
5/20

Moral of the story

Finite denotational semantics have complexity consequences.

* Analogous results for tree automata, and for propositional
linear logic (using your favorite finite model)

¢ Another application to ST\ at fixed order:

Theorem (Terui, RTA’12)
Normalizing an STA-term of type Bool w/ order < r subterms is

* k-EXPTIME-complete for r = 2k + 2
* k-EXPSPACE-complete for r = 2k + 3

Proof of membership in k-EXPTIME / k-EXPSPACE.
B-reduce to halve order, then evaluate in LL Scott model. [

6/20

Extensional completeness for ST\

Need to change input representation!

Hillebrand, Kanellakis & Mairson, motivated by database
queries, encode finite relational (1st-order) structures as inputs
— completeness for ELEMENTARY.

¢ We'll come back to this later
* “fB-convertibility of STA terms ¢ ELEMENTARY”
(Statman 1979) can be recovered from this

¢ Refined by H&K: characterization of k-EXPTIME /
k-EXPSPACE in ST A+constants+equality at fixed order

* Also using semantic evaluation for soundness!

7/20

Regular languages in
Elementary Linear Logic

Elementary Linear Logic (ELL)

ELL = Multiplicative-Additive Linear Logic (MALL) + ?/! rules:

FT,74,7A T - Aq,...,AnB
- T,7A FT,7A F?Aq,...,7A,, B

l-intro: promotion and dereliction must come together.
— enforces stratification by !-depth
(subproofs cannot change depth during cut-elimination)

Representable functions in 2nd-order ELL = ELEMENTARY:

e Soundness: normalization in f(depth)-EXPTIME
¢ depth in ELL ~ order in STA

* Extensional completeness: Church encoding works
¢ thanks to (impredicative) polymorphism!

8/20

Complexity in second-order ELL (1)

Data types:
e Bool=1@1
o Str=VX. (X < X) o (X o X) o (X —X)

Extensional completeness: all languages L € ELEMENTARY
expressible by ELL proofs of !Str —!*Bool (k depends on L).

Soundness (reformulated):
proofs of ¥Bool can be normalized in f(k)-EXPTIME.

Question: what do we get for a fixed depth k?

9/20

Complexity in second-order ELL (2)

Depth k = 2 case, in a variant of ELL:

Theorem (Baillot, APLAS’11)
The proofs of |Str —o !!Bool in 2nd order elementary affine logic
with recursive types decide exactly the languages in P.

10/20

Complexity in second-order ELL (2)

Depth k = 2 case, in a variant of ELL:

Theorem (Baillot, APLAS’11)
The proofs of |Str —o !!Bool in 2nd order elementary affine logic
with recursive types decide exactly the languages in P.

Recursive types are crucial for the above, as we show:

Theorem
The proofs of |Str —o !!Bool in 2nd order ELL decide exactly the
regular languages.

Proof idea.
Adapt Hillebrand & Kanellakis’s ST proof. Requires
non-trivial finite semantics for 2nd order MALL (MALL2). [

10/20

Finite semantics for MALL2

Choice of semantics: syntax/(observational equivalence).
Definition (Eqv. for propositional observations)
Let A be a MALL?2 formula and 7, 7’ : A. Define m ~4 7’ as:
VBMALLQO, Vp : (A B), cut(m, p) = cut(r’, p)
¢ MALLO = propositional MALL
e = is usual proof equivalence on MALLO (think =,,)

Theorem

For any MALL2 formula A, there are finitely many classes for ~4.
Corollary

There exists a non-trivial finite semantics for MALL2.

New result of independent interest, cf. Pistone’s talk 2 days ago.
11/20

Semantic evaluation in ELL, in a nutshell

Let 7 : I1Str —o !!1Bool. There exists
7 : Str[A;] — ... —o Str[A,] — !Bool
such that Vw. w(lw) = 17 (w[A1], ..., w[A,]). (Str=VX.Str[X])

Thanks to stratification, w.l.o.g. Ay,..., A, € MALL2.
Using finite MALL2 semantics [—], wW[A] induces map

[wlla : [A — A] x [A — A] = [A — A]
such that W[A](If1, o) =g = |wla([A], [f2]) = [g]-

e Church encoding — ||w||4 computable by automaton
o (J@llay, - [w]l4,) determine 7(@[A1], ..., BA,])
and therefore 7 (!w)

12/20

What about higher depths?

We solved depth k = 2 case for ELL.

(First characterization of regular languages in a type system
with impredicative quantification?)

Whenk > 2:

Theorem (Baillot, APLAS’11)

The proofs of !Str —o ¥Bool in EAL+rectypes decide exactly the
languages in (k — 2)-EXPTIME.

¢ For ELL without recursive types, we get a class between
(k — 3)-EXPTIME and (k — 2)-EXPTIME... which one exactly?

* Semantics probably has a role to play in the answer

13/20

Inputs as finite models:
towards logarithmic space in ELL?

A bit of descriptive complexity

Data represented as (totally ordered) finite first-order structures
(a.k.a. finite models), over a signature of relation symbols.
Example

Signature for binary strings: (<, S).
Finite models are (D, <P, SP), |D| < co. SP(d) = “d™ bitis 1”.

Descriptive complexity: characterize a complexity class C as set of
queries written in some logic L¢, i.e. “is this L¢ formula true in
this finite model?”. For instance:

Theorem (Fagin 1974)
Queries in existential second-order logic = NP.

14/20

Finite models in ST\ and extensional completeness

With type d of elements (equipped with Eq : d — d — Bool),

* Represent k-ary relations as lists of k-tuples
Rely[d,A]=(d* - A—-A) A A
(in the spirit of database theory: relation = set of records)

e Provide list of all domain elements (List[d, A] = Rely[d, A])

Theorem (Hillebrand, Kanellakis & Mairson, LICS’93)
Terms t : List|d, A] — Rel, [d,A1] — ... = Relg, [d,An] — Bool
in STA compute exactly ELEMENTARY queries over finite models.

To feed input, instantiate d = 0" — o0 (n = domain size).
Program has “Vd 3A”, input has “3d VA”. Size of semantics
depends on input, breaking earlier expressivity upper bound.

15/20

Finite models in ELL

We transpose this idea to second-order ELL:

e We use Rel;[D] = D®F — Bool,

List[D] = VX.I(D — X —o X) —o (X — X)
e Allow non-linear use of D:

ContD]=D —-D®D,Wk[D] =D — 1

n
Inp, = 3D. !List[D] ® (X)!"Rely,[D]® " Cont[D]e "Wk[D]
i=1
(choose r to satisfy stratification constraint)
e For size n domain, witness D =1 & ... (n times)... &1

(positive, therefore duplicable)

16/20

Towards logarithmic space in ELL? (1)

Theorem (Immerman 1983)
Queries in first-order logic with deterministic transitive closure =
logarithmic space (L) queries.

Proposition
All L queries on finite models for a given signature can be computed
by an ELL proof of Inp, —o !!Bool.

Proof idea: compute transitive closure of a relation
R C DF x DF by iterating ¢ : P(DF x D¥) — P(D* x DF).
Determinism of R ensures linearity: pr : Rely —o Rely in ELL.
This is remarkable enough to hope for:

Conjecture

Conversely, proofs of Inp, —o !Bool only decide L queries.

17/20

Towards logarithmic space in ELL? (2)

Conjecture

ELL proofs of the following type only decide L queries:

<3D. IList[D] @ (X) !'Rel,[D]® Cont[D]® !!Wk[D]) —o 11Bool
i=1

In predicative case (V/3 range over propositional formulae):

* conjecture seems very likely
¢ already non-trivial... (maybe Geometry of Interaction works?)

* note that ext. completeness holds w/o impredicativity

In general case, I have no intuition or methods available ®

18/20

Conclusion and future work

Conclusion

We brought methods from the ST tradition to 2nd order ELL,
showing that similar phenomena occur in both:

® Church encodings of inputs restrict expressivity
* Semantic evaluation can prove this (and lots of other stuff)
* To overcome this, one can represent inputs as finite models

Lemma (or Theorem, if you care about semantics)
The quotient of MALL2 by propositional observations is finite.

Theorem (or Corollary)
Proofs of !Str —o 1Bool in ELL decide regular languages.

Moral: geometry (e.g. stratification) and typing jointly control
complexity; semantics reflects the latter.

19/20

Open problems / future work

Logspace conjecture: what kind of techniques can solve this??

Classes characterized by higher fixed depths?
(For both !Str — ¥Bool and Inp; — ¥Bool...)

Related: complexity of normalizing a proof of ¥Bool in ELL?
* k = 0: P-complete
e k= 1: PSPACE-hard, in EXPTIME
e k> 2: (k—1)-EXPTIME-hard, in k-EXPTIME

(For EAL+rectypes, k-EXPTIME-complete by Baillot’s results.)

On MALL2 semantics: further investigations ongoing,
j-w.w. P. Pistone and L. Tortora de Falco.

20/20

	Regular languages in Elementary Linear Logic
	Inputs as finite models: towards logarithmic space in ELL?
	Conclusion and future work

