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Proof nets and “bureaucracy”

Proof nets were designed to provide canonical representations of proofs:

invariant with respect to reductions and permutations

A B,C

A⊗ B,C D

A⊗ B,C ⊗ D

→γ A

B,C D

B,C ⊗ D

A⊗ B,C ⊗ D

free categories, coherence, etc.

A⊗ (B ` C ) (A⊗ B) ` C

A⊗ (B ` (C ⊗ D)) (A⊗ B) ` (C ⊗ D)

πA,B,C

A⊗(B`f ) (A⊗B)`f

πA,B,C⊗D
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Strong coherence: MLL proof nets

MLL proof nets are canonical representative of equivalence classes of proofs:

A B,C

A⊗ B,C D

A⊗ B,C ⊗ D

→γ A

B,C D

B,C ⊗ D

A⊗ B,C ⊗ D

A⊗ (B ` C) (A⊗ B) ` C

A⊗ (B ` (C ⊗ D)) (A⊗ B) ` (C ⊗ D)

πA,B,C

A⊗(B`f ) (A⊗B)`f

πA,B,C⊗D

A B C D

A⊗ B C ⊗ D

Then for two derivations d , d ′ it is equivalent:

d , d ′ induce the same proof net

d can be obtained from d ′ by permuting rules

d , d ′ have the same interpretation in all ∗-autonomous category
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Weak coherence: MLL+ proof nets
The equivalence 'Perm for MLL+ (and the equivalence 'Diag given by the free
∗-autonomous category) is PSPACE -complete [HH2014].

Hence no reasonable canonical
representative.

A weaker approach: Trimble’s rewiring

Add to MLL proof structures unit links:
•
1

⊥ A

Define 1-rewiring '1
w over proof nets: ⊥ A

B

'1
w ⊥ A

B

Consider proof nets modulo rewiring 'w , the refl./trans. closure of '1
w .

Example:

⊥`⊥ 1⊗ 1 'w ⊥`⊥ 1⊗ 1 1` 1 ⊥⊗⊥ 6'w 1` 1 ⊥⊗⊥

Then d , d ′ can be obtained by permuting rules iff they induce the same proof net up to
rewiring.

Theorem: [BCST1996, Hughes2012] The category of MLL+ proof nets modulo rewiring is
the free ∗-autonomous category.
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Proof equivalence in System F

Some results which hold for MLL and λ→ fails for F :

separability (Böhm’s theorem): there exists non separable βη-distinct terms

observational equivalence is undecidable

Moreover, many “wanted” isomorphisms fail for βη:

Russell-Prawitz translation: A ∨ B ' ∀X ((A⇒ X )⇒ (B ⇒ X )⇒ X )

initial algebras, final coalgebras: µXA ' ∀X ((A⇒ X )⇒ X ),
νXA ' ∃X ((X ⇒ A) ∧ X )

“Yoneda isomorphism”: ∀X ((A⇒ X )⇒ B[X ]) ' B[A]

Hence βη-equality is in general too weak and one has to look at models:

Parametric models (extensional), characterize wanted isomorphisms and
observational equivalence.

Intensional models, characterize the βη theory and provable isomorphisms.
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Proof equivalence in MLL2

As for System F , separability fails: these two proof nets are non separable:

A A⊥

⊗

∃X (X ⊗ X⊥)

A⊥ B

A⊥ ` B

f

6' B B⊥

⊗

∃X (X ⊗ X⊥)

A⊥ B

A⊥ ` B

f

As for System F , many “wanted” isomorphisms fail:

Russell-Prawitz translation: A⊗ B ' ∀X ((A ( B ( X ) ( X )

“Yoneda isomorphism”: ∀X ((A ( X ) ( B[X ]) ' B[A]

However, Seiller and Nguyen recently proved that observational equivalence in MLL2 is
decidable and has finitely many classes at each type.
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Proof equivalence in MLL2

Some remarks:

the “wanted” isomorphisms include 1 ' ∀X (X ( X ), ⊥ ' ∃X (X ⊗ X⊥): hence no
“strong coherence” for MLL2.

A
⊥,A B

⊥,A⊗ B

= A
B
⊥,B

⊥,A⊗ B

⇒

A A⊥,A

A⊗ A⊥,A

∃X (X ⊗ X⊥),A B

∃X (X ⊗ X⊥),A⊗ B

=
A

B B⊥,B

B ⊗ B⊥,B

∃X (X ⊗ X⊥),A

∃X (X ⊗ X⊥),A⊗ B

the “wanted” isomorphism > ' ∃XX says that all proofs of ∃XX are equal: hence
MLL2 has some “additive” behavior (initial and terminal objects)

Γ,>
...

∆,>

= ∆,> ⇒

Γ, Γ⊥

Γ, ∃XX

...
∆, ∃XX

=
∆,∆⊥

∆,∃XX

In general, all such new equivalences do not preserve witnesses of ∃. Hence we need new
approaches to the syntax and semantics of the ∃-rule!
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MLL2 and the coend calculus

MLL2 formulas correspond to multivariant functors F ,G : Cop ⊗ C→ D, e.g. C(X ,X ),
X ⊗ X⊥.

A dinatural transformation θA : F (A,A)→ G(A,A) is a family satisfying a class of
diagram generalizing usual natural transformations.

Limits and colimits of dinaturals are given by ends and coends

C

∫
X

F (X ,X ) F (A,A)

F (B,B) F (A,B)

h

θA

θB
δA

δB F (A,f )

F (f ,B)

F (B,A) F (A,A)

F (B,B)
∫ X

F (X ,X )

C

F (f ,A)

F (B,f ) ωA

ηA

ηB

ωB

h

Essentially, quantifiers + equalizer/co-equalizer conditions
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Coends and Yoneda

Many categorial constructions can be expressed in the coend calculus starting from

Nat(F (X ),G(X )) '
∫
X

C(F (X ),G(X ))

In particular we obtain a end version of the Yoneda isomorphism:∫
X

C(C(A,X ),F [X ]) ' F [A]

From this we can deduce all “wanted” isos:

units: 1 '
∫
X

X ( X , ⊥ '
∫ X

X ⊗ X⊥

connectives:
∫
X

((A ( B ( X ) ( X ) ' A⊗ B

fixed points:
∫
X

((T [X ] ( X ) ( X ) ' µX .T [X ]
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Dinaturality and polymorphism

Dinaturality is a way of formalizing parametric polymorphism (i.e. uniformity of second
order proofs)

If C is ∗-autonomous and complete, we can extend the interpretation to MLL2 as follows:

(∀XA[X ])C :=
∫
X

AC(X ,X ), (∃XA[X ])C :=
∫ X

AC(X ,X )

derivations d ` Γ in MLL2 yield dinaturals dC : 1→ ΓC(~X , ~X )

We let then

π 'ε σ if for all C ∗-autonomous and complete πC = σC

'ε is then a congruence which extends βη, due to equalizer/co-equalizer conditions.
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Coends and non separable proof nets

Equalizer/co-equalizer conditions capture non-witness-preserving permutations:

A A⊥

⊗

∃X (X ⊗ X⊥)

A⊥ B

A⊥ ` B

f

'ε B B⊥

⊗

∃X (X ⊗ X⊥)

A⊥ B

A⊥ ` B

f

is just a coend diagram:

B⊥ ⊗ A A⊗ A⊥

B ⊗ B⊥
∫ X

X ⊗ X⊥

f⊥⊗A

B⊥⊗f ωA

ωB
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MLL2 proof nets are not dinatural

Similarly, the following equation in linear natural deduction

∀X (X ( X )

A ( A [
n

A]

A
f
B n

A ( B

'ε
∀X (X ( X )

B ( B

[
n

A]

f
B

B n
A ( B

is just an end diagram:

∫
X
C(X ,X ) C(A,A)

C(B,B) C(A,B)

δA

δB C(A,f )

C(f ,B)

15 / 29



Outline

1 Proof nets and proof equivalence

2 Proof nets, coends and the Yoneda isomorphism

3 Weak coherence for coends

4 Observational equivalence (joint work with L. Tortora de Falco)

16 / 29



Yoneda formulas

Yoneda isomorphisms in MLL2:∫
X

((
n⊗
i

Ci ( X ) ( D[X ]) ' D[
n⊗
i

Ci ⊗ 1Y ]

∫ X

((
n⊗
i

Ci ( X )⊗ D⊥[X⊥]) ' D⊥[
ņ

i

C⊥i `⊥Y ]

MLL2Y is the fragment of MLL2 in which quantification is restricted to Yoneda formulas:

∀XA is admitted only if A is Yoneda in X : A = (
⊗n

i Ci ( X ) ( D[X ]

∃XA is admitted only if A is co-Yoneda in X : A = (
⊗n

i Ci ( X )⊗ D[X ]⊥

Examples:

1Y := ∀X (X⊥ ` X ),⊥Y := ∃X (X ⊗ X⊥) are ok;

∀X ((A ( B ( X ) ( X ), ∃X ((A ( B ( X )⊗ X⊥) are ok;

∀X ((X ⊗ X⊥) ` (X ( X )),∀X ((T [X ] ( X ) ( X ) are not ok.
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∃-linkings for MLL2Y

Any formula A = ∃X ((
˙n

i Ci ` X )⊗ D[X⊥]) has a unique co-edge cA = (X ,X⊥) (i.e.
pair of dual existential variables). We let Γ∃ be the set of co-edges in Γ.

An ∃-linking over Γ is a pair (E ,W ), where E is a linking over all non-existential variables
in Γ and W : Γ∃ → Γ is a witness function.

Intuition: W assigns a witness to all ∃ links in Γ.

A compact representation of proof nets for MLL2Y :

X D[X ]⊥
˙

i C⊥i

`
⊗

∃

A

;

A D[A]⊥
˙

i C⊥i

`
⊗

∃

A

Correct ∃-linkings are considered up to rewitnessing: 'w is the refl./trans. closure of
1-rewitnessing (i.e. changing W by W ′ differing only by one value).
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From Trimble rewiring to rewitnessing

A
⊥,A B

⊥,A⊗ B

A
B
⊥,B

⊥,A⊗ B

A B

⊥ A⊗ B

A B

⊥ A⊗ B

A A⊥,A

A⊗ A⊥,A

∃X (X ⊗ X⊥),A B

∃X (X ⊗ X⊥),A⊗ B

A

B B⊥,B

B ⊗ B⊥,B

∃X (X ⊗ X⊥),A

∃X (X ⊗ X⊥),A⊗ B

A B

∃X (X ⊗ X⊥) A⊗ B

A B

∃X (X ⊗ X⊥) A⊗ B

Theorem 1: the category of ∃-linkings modulo rewitnessing is ∗-autonomous with unit 1Y .

Theorem 2: the category of ∃-linkings over MLL1Y ,⊥Y modulo rewitnessing is the free
∗-autonomous category.
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Rewitnessing captures co-equalizer conditions

Up to rewitnessing, ∃ is a coend in the category of ∃-linkings:

∃X ((
˙n

i C⊥i ` X )⊗ D[X ]⊥) (
⊗n

i Ci ⊗ A⊥) ` D[B]

f
'w

∃X ((
˙n

i C⊥i ` X )⊗ D[X ]⊥) (
⊗n

i Ci ⊗ A⊥) ` D[B]

f

(
˙n

i Ci ` B)⊗ D[A] (
˙n

i Ci ` A)⊗ D[A]

(
˙n

i Ci ` B)⊗ D[B] ∃X (
˙n

i Ci ` X )⊗ D[X ]

F (f ,A)

F (B,f ) ωA

ωB

Theorem 3: for MLL2Y , the category of ∃-linkings modulo rewitnessing is isomorphic to
the category of proof nets modulo 'ε.
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Outline

1 Proof nets and proof equivalence

2 Proof nets, coends and the Yoneda isomorphism

3 Weak coherence for coends

4 Observational equivalence (joint work with L. Tortora de Falco)
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Observational equivalence

We consider the equivalence 'Obs defined as follows:

π : A 'Obs σ : A when for all P propositional and δ : A⊥,P, [π, δ] 'βη [σ, δ]

In other words, we use MLL proof nets as observables

The proof nets δ : A⊥,P are the observations

Remarks:

many proof nets π : A have no observations (e.g. A = ∃XX , ∃X (X ( X ))

hence for such formulas 'Obs is trivial.

'Obs includes 'ε strictly

22 / 29



Characterising equivalence through MLL proof nets

Cut-elimination in MLL2: transporting a `-linking onto a ⊗-linking:

A

X X⊥ X⊥ X

``

∀XA

A⊥[B/X ]

B⊥BBB⊥

⊗ ⊗

∃XA⊥

Hence ∃XA⊥ codes information on how to respond to any `-linking for A (which
are finitely many)
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Characterising equivalence through MLL proof nets

This allows to define a translation π 7→
∑

i πi from MLL2 to formal sums of MLL
proof nets:

A⊥[B/X ]

B⊥B. . .BB⊥

⊗ ⊗

∃XA⊥

7→
∑

E


A⊥〈X 〉

+
B⊥BBB⊥

E



Where E varies among the `-linkings of A.
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Characterising equivalence through MLL proof nets

This procedure allows to eliminate all ∃-links and yields a finite set of MLL proof
nets.

π 7→
∑
i

πi

Remarks:

when a `-linking does not exists (e.g. ∀XX ), the construction yields the
empty set (e.g. all proofs of ∃XX are equally empty).

however, when π◦ : A is empty, then it means it has no observables: no
σ : A⊥,P, where P is propositional.

25 / 29



Characterising equivalence through MLL proof nets

The interaction between a proof and an observation is characterized by the MLL
translation:

Lemma. If π : A and δ : A⊥,P, then there exist unique i , j in the MLL translations of π
and σ such that

[π, δ] 'β [πi , δj ]

From this, and the usual characterization of 'Obs for MLL, we get

Theorem. The MLL translation captures observational equivalence, i.e.

π 'Obs σ iff π◦ = σ◦
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A “finite” relational model for MLL2

The MLL translation induces an extension of the usual relational model of MLL to MLL2
satisfying

JπK =
⋃
i

JπiK

formulas correspond to certain polynomial functors Φ(~x) = Πi,jx
ni
i · c

mi
i (where the

constants ci stand for bound variables)

proofs correspond to multi-graphical relations, i.e. family of relations θ~x essentially
induced by a finite set of MLL proof nets: for all sets ~a

pi (θ~a) = pj(θ~a) when (i , j) ∈ G

and G is some allowable graph (equivalently, a MLL proof net).

this gives rise to a ∗-autonomous fibration MG→ P, with adjoints

Σ a π∗ a Π

precisely corresponding to interpretation of ∀, ∃ as finite sets of `-linkings/⊗-linkings.
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Conclusions

We introduced two approaches to capture proof equivalence in MLL2 by a different
interpretation of the ∃-link:

by interpreting ∃ as a coend: we characterized the equivalence 'ε induced by coends
by rewitnessing, a variant of Trimble’s rewiring for a fragment of MLL2 related to the
Yoneda isomorphism.

by analyzing the behavior of ∃ through cut-elimination, we defined a translation
π 7→

∑
i πi from MLL2 proof nets to finite sets of MLL proof nets which

characterizes observational equivalence
leads to a “finite” relational model for MLL2 characterizing observational
equivalence too.

Future work:

Rewitnessing beyond Yoneda formulas (e.g. how to treat initial algebras?)

Computing coends isomorphisms through proof nets?

Observational equivalence for MELL2? Interaction between the MLL translation and
Taylor expansion?
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Thank you !
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