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Proof nets and “bureaucracy”

Proof nets were designed to provide canonical representations of proofs:

@ invariant with respect to reductions and permutations

A BC B,C D
A®B,C D -, A B,C®D
A®B,C®D A®B,C®D

o free categories, coherence, etc.

TA,B,C

AR (BN C) — 22, (A®B)B C
lA@(B??f) l(A@B)Wf
A® (BN (C® D)), (A2 B) ¥ (C& D)
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Strong coherence: MLL proof nets

MLL proof nets are canonical representative of equivalence classes of proofs:

TA,B,C

A BC BC D A® (B C) — 22 (AgB)® C
A®B,C D —, A B,C®D lA@(BWF) l(;@s)m
A®B, CeoD A®B,CaD A® (B3 (C® D)) ye2,(A® B) 3 (C® D)
\ A B C D /
N/ N/
A® B ceD

Then for two derivations d, d’ it is equivalent:
@ d, d’ induce the same proof net
@ d can be obtained from d’ by permuting rules

@ d,d’ have the same interpretation in all *-autonomous category



Weak coherence: MLL™ proof nets

The equivalence ~pem for MLLT (and the equivalence ~p;,, given by the free
*-autonomous category) is PSPACE-complete [HH2014].
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Weak coherence: MLL™ proof nets

The equivalence ~pem for MLLT (and the equivalence ~pj, given by the free
*-autonomous category) is PSPACE-complete [HH2014].Hence no reasonable canonical
representative.

A weaker approach: Trimble's rewiring

@ Add to MLL proof structures unit links:

=w

@ Define 1-rewiring ~i, over proof nets: 1 ‘A ~, A
@ Consider proof nets modulo rewiring ~,,, the refl. /trans. closure of ~L

Example:

<~

- 101 v 1231 121 1731 1ol #w 131 1el

Then d, d’ can be obtained by permuting rules iff they induce the same proof net up to
rewiring.

Theorem: [BCST1996, Hughes2012] The category of MLL™ proof nets modulo rewiring is
the free *-autonomous category.
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Proof equivalence in System F

Some results which hold for MLL and \_, fails for F:

@ separability (Bohm's theorem): there exists non separable Sn-distinct terms

@ observational equivalence is undecidable

Moreover, many “wanted” isomorphisms fail for 5n:

@ Russell-Prawitz translation: AV B ~ VX((A= X) = (B = X) = X)

@ initial algebras, final coalgebras: pXA ~VX((A= X) = X),
VXA ~ IX((X = A) A X)

@ “Yoneda isomorphism”: VX((A = X) = B[X]) ~ B[A]

Hence fn-equality is in general too weak and one has to look at models:

@ Parametric models (extensional), characterize wanted isomorphisms and
observational equivalence.

@ Intensional models, characterize the 7 theory and provable isomorphisms.



Proof equivalence in MLL2

As for System F, separability fails: these two proof nets are non separable:

A At
\ / *
® At B ® At B
| \ / | \ /

IX(X®XE) AtmB IX(X®Xt) At®B
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Proof equivalence in MLL2

As for System F, separability fails: these two proof nets are non separable:

A At
\ / ”
® A+ B ® At B
| \ 7/ | \ /
IX(X®XE) AtmB IX(X®Xt) At®B

As for System F, many “wanted” isomorphisms fail:

@ Russell-Prawitz translation: A® B ~ VX((A — B — X) — X)
@ "Yoneda isomorphism”: VX((A — X) — B[X]) ~ B[A]

However, Seiller and Nguyen recently proved that observational equivalence in MLL2 is
decidable and has finitely many classes at each type.
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Proof equivalence in MLL2

Some remarks:

@ the “wanted” isomorphisms include 1 ~ VX (X — X), L ~ 3X(X ® X*): hence no
“strong coherence” for MLL2.

A At A B B, B

A _B_ TAsAlA " BeB B
1,A B = A 1.B = —_— = _—
TAGE TAGE IX(X @ XT),A B A IX(X @ XT),A

IX(X@X'),ARB IX(X@X'),ARB



Proof equivalence in MLL2

Some remarks:

@ the “wanted” isomorphisms include 1 ~ VX (X — X), L ~ 3X(X ® X*): hence no
“strong coherence” for MLL2.

A At A B BL.B
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1A B = A 1B 5> _ASAA _ _B®B.B
1,A@B 1,A®B XX eX),A B A IX(X @ X1), A
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@ the “wanted” isomorphism T ~ 3XX says that all proofs of 3XX are equal: hence
MLL2 has some “additive” behavior (initial and terminal objects)
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Proof equivalence in MLL2

Some remarks:

@ the “wanted” isomorphisms include 1 ~ VX (X — X), L ~ 3X(X ® X*): hence no
“strong coherence” for MLL2.

A ALA B BB

A —B_ TAnALA “EeBlB

1,A B = A 1B 5> _ASAA _ _Bes.B
1,A@B 1,A®B IX(X®XT),A B A IX(X @ X1), A
(X ©X),A0B IX(X®X),A® B

@ the “wanted” isomorphism T ~ 3XX says that all proofs of 3XX are equal: hence
MLL2 has some “additive” behavior (initial and terminal objects)

1
nT rrﬁ;x
s L
: = AT = = i
: : A, 3IXX
AT :
A, 3IXX

In general, all such new equivalences do not preserve witnesses of 3. Hence we need new
approaches to the syntax and semantics of the 3-rule!
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e Proof nets, coends and the Yoneda isomorphism

10 /29



MLL2 and the coend calculus

MLL?2 formulas correspond to multivariant functors F, G : C* ® C — D, e.g. C(X, X),
XXt

11/29



MLL2 and the coend calculus

MLL?2 formulas correspond to multivariant functors F, G : C* ® C — D, e.g. C(X, X),
XXt

A dinatural transformation 04 : F(A, A) — G(A, A) is a family satisfying a class of
diagram generalizing usual natural transformations.

11/29



MLL2 and the coend calculus

MLL?2 formulas correspond to multivariant functors F, G : C* ® C — D, e.g. C(X, X),
XXt

A dinatural transformation 04 : F(A, A) — G(A, A) is a family satisfying a class of
diagram generalizing usual natural transformations.

Limits and colimits of dinaturals are given by ends and coends

o F(B,A) Y F(a, )

J/F(B.f)

dA
X) — Fan F(B.B) —> ¥ F(X.X)

F(X,
lsg l %)
F(B.B) 5 F(AB)

Essentially, quantifiers 4+ equalizer/co-equalizer conditions

11/29
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Coends and Yoneda

Many categorial constructions can be expressed in the coend calculus starting from

Nat(F(X), G(X)) ~ /X(C(F(X), G(X))
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Dinaturality and polymorphism

Dinaturality is a way of formalizing parametric polymorphism (i.e. uniformity of second
order proofs)

If Cis *-autonomous and complete, we can extend the interpretation to MLL2 as follows:
o (VXAIX])® := [, AS(X, X), BXAX])C := [* A%(X, X)
o derivations d I I in MLL2 yield dinaturals d® : 1 — (X, X)

We let then

q c c
7 ~ o if for all C "-autonomous and complete 7~ = o J

~. is then a congruence which extends 7, due to equalizer/co-equalizer conditions.

13/29



Coends and non separable proof nets

Equalizer/co-equalizer conditions capture non-witness-preserving permutations:
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MLL?2 proof nets are not dinatural

Similarly, the following equation in linear natural deduction

YX(X —o X) .
A <A [A] (Al
— YX(X —o X) P

p e B—B B
B
7/‘58 n A—B "

is just an end diagram:

[, CX, X) =25 C(A,A)

lzsg lIC(A,f)

C(B.B) —5 C(AB)

15/29



Outline

© Weak coherence for coends
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3-linkings for MLL24

Any formula A = 3X((2Y7 C; % X) ® D[X"]) has a unique co-edge ca = (X, X") (i.
pair of dual existential variables). We let I'? be the set of co-edges in T.

inT and W : T2 — T is a witness function.

€.

An 3-linking over I is a pair (E, W), where E is a linking over all non-existential variablesJ

Intuition: W assigns a witness to all 3 links in .

A compact representation of proof nets for MLL2g :

N\
A /‘A
. \ / \

% X o .G+ A DA
\ / / \ /
x ~ x
N N
K ]
|

®
|
3 3

Correct 3-linkings are considered up to rewitnessing: ~, is the refl. /trans. closure of
1-rewitnessing (i.e. changing W by W’ differing only by one value).

18 /29
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From Trimble rewiring to rewitnessing

A B LTy
1A B A 1,B /,"’\A\ /B 0 A\ /B
LA®E LA®B 1 A®B L AwB
A At A B BB PP
-4 e iJ
A® AL A B®B*,B A B A B
XX @X),A B A XX ®XH),A -~ N\ / -~ N/

IX(X@X),ARB IX(X © XH),A® B IXXeXt) AsB IX(X®XL) A®B
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From Trimble rewiring to rewitnessing

A B ety
1,A B A 1,B x‘)A\ B I A\ B
T I AoB T Ao B / / / /
1,A®B 1L,A®B 1 AwB | Ao B
A ALA B B4.B
L n P Phe b
AR AL A B® B, B A B oA B
XX @X),A B A XX ®XH),A .\ / .\ /
IX(X®X*H),A® B IX(X @ X*H),A® B IX(X@Xt) A®B IX(X@Xt) A®B

Theorem 1: the category of 3-linkings modulo rewitnessing is *-autonomous with unit lyJ
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From Trimble

rewiring to rewitnessing

A B Lo 7T
1A B A 1,B ,f'}A\ B 0 A\ B
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IX(X®X*H),A® B IX(X @ X*H),A® B IX(X@Xt) A®B IX(X@Xt) A®B

Theorem 1: the category of 3-linkings modulo rewitnessing is *-autonomous with unit lyJ

Theorem 2: the category of 3-linkings over MLL1,, 1, modulo rewitnessing is the free
*-autonomous category. J

19/29
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Up to rewitnessing, 3 is a coend in the category of 3-linkings:

L)

XI*)  (®] G o A*)% D]

XI)  (®]C e A") 3 DIB]

XN G X)@ D

IX(y7 G- X) ®D

12
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Rewitnessing captures co-equalizer conditions

Up to rewitnessing, 3 is a coend in the category of 3-linkings:

L)

XI*)  (®] G o A*)% D]

XI)  (®]C e A") 3 DIB]

XN G X)@ D

IX(y7 G- X) ®D

(297 G % B) ® DIA] — 25 (297 G, % A) @ D[A]

F(B, r‘)J JWA

(7%} G 3 B) ® D[B] —5+ 3X(?3] G; 3 X) @ D[X]

Theorem 3: for MLL24 , the category of 3-linkings modulo rewitnessing is isomorphic to
the category of proof nets modulo ~.. J
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Outline

@ Observational equivalence (joint work with L. Tortora de Falco)
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Observational equivalence

We consider the equivalence ~ops defined as follows:

m:A ~ops 0:Awhen for all P propositional and § : A*, P, [r, ] ~g, [0, 4]

)

In other words, we use MLL proof nets as observables
The proof nets § : AL, P are the observations

Remarks:
@ many proof nets 7 : A have no observations (e.g. A =3XX,3IX(X — X))
@ hence for such formulas ~ops is trivial.

@ ~(ps includes ~, strictly
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Characterising equivalence through MLL proof nets

Cut-elimination in MLL2: transporting a %¥-linking onto a ®-linking:

X xt Xt X Bt B B Bt
x5 23 ® ®
A AL[B/X]
\ |
VXA IXAL

v

Hence 3XA' codes information on how to respond to any Z-linking for A (which
are finitely many)
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Characterising equivalence through MLL proof nets

Cut-elimination in MLL2: transporting a %¥-linking onto a ®-linking:

Bl B B BL

Hence 3XAL codes information on how to respond to any Z-linking for A (which
are finitely many)
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Characterising equivalence through MLL proof nets

This allows to define a translation 7+ >, m; from MLL2 to formal sums of MLL
proof nets:

® ® =X, oA N\S
E

AT[B/X] AH(X)

Sxat

Where E varies among the %-linkings of A.
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Characterising equivalence through MLL proof nets

This procedure allows to eliminate all 3-links and yields a finite set of MLL proof
nets.

W’—)Zﬂ';
i

Remarks:

@ when a B-linking does not exists (e.g. ¥XX), the construction yields the
empty set (e.g. all proofs of AXX are equally empty).

@ however, when 7° : A is empty, then it means it has no observables: no
o : AL, P, where P is propositional.
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Characterising equivalence through MLL proof nets

The interaction between a proof and an observation is characterized by the MLL
translation:

Lemma. If 7 : A and § : AL, P, then there exist unique i, in the MLL translations of 7
and o such that

[71—»5] =p [7r"76j]

From this, and the usual characterization of ~¢ps for MLL, we get

Theorem. The MLL translation captures observational equivalence, i.e.
T ~ops o iff 7w =0°
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A "“finite” relational model for MLL2

The MLL translation induces an extension of the usual relational model of MLL to MLL2
satisfying
[x] = UJIx]

@ formulas correspond to certain polynomial functors ®(X) = M, ;x" - ¢ (where the
constants ¢; stand for bound variables)
@ proofs correspond to multi-graphical relations, i.e. family of relations 65 essentially
induced by a finite set of MLL proof nets: for all sets &
pi(0z) = pj(0:) when (i,j)€¥

and ¢ is some allowable graph (equivalently, a MLL proof net).

*

@ this gives rise to a “-autonomous fibration MG — P, with adjoints
YHrt 4N

precisely corresponding to interpretation of V, 3 as finite sets of Z¥-linkings/®-linkings.



Conclusions

We introduced two approaches to capture proof equivalence in MLL2 by a different
interpretation of the 3-link:

@ by interpreting 3 as a coend: we characterized the equivalence ~. induced by coends
by rewitnessing, a variant of Trimble's rewiring for a fragment of MLL2 related to the
Yoneda isomorphism.

@ by analyzing the behavior of 3 through cut-elimination, we defined a translation
m > . m from MLL2 proof nets to finite sets of MLL proof nets which

e characterizes observational equivalence
o leads to a “finite” relational model for MLL2 characterizing observational

equivalence too.

Future work:
@ Rewitnessing beyond Yoneda formulas (e.g. how to treat initial algebras?)
@ Computing coends isomorphisms through proof nets?

@ Observational equivalence for MELL2? Interaction between the MLL translation and
Taylor expansion?



Thank you !
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