

Proof equivalence in second order multiplicative linear logic

Paolo Pistone

IRIF, Université Paris 7

October 9th 2018

Outline

1 Proof nets and proof equivalence

2 Proof nets, coends and the Yoneda isomorphism

3 Weak coherence for coends

Observational equivalence (joint work with L. Tortora de Falco)

4 □ → 4 部 → 4 差 → 4 差 → 差 今 Q ペ
2/29

Outline

Proof nets and proof equivalence

Proof nets, coends and the Yoneda isomorphism

3 Weak coherence for coends

Observational equivalence (joint work with L. Tortora de Falco)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Proof nets and "bureaucracy"

Proof nets were designed to provide canonical representations of proofs:

• invariant with respect to reductions and permutations

$$\frac{A \quad B, C}{A \otimes B, C} \quad D \quad \rightarrow_{\gamma} \quad \frac{A \quad B, C \quad D}{A \otimes B, C \otimes D} \quad \rightarrow_{\gamma}$$

• free categories, coherence, etc.

$$\begin{array}{c} A \otimes (B \ \mathfrak{P} \ C) \xrightarrow{\pi_{A,B,C}} (A \otimes B) \ \mathfrak{P} \ C \\ \downarrow_{A \otimes (B \ \mathfrak{P} f)} & \downarrow_{(A \otimes B) \ \mathfrak{P} f} \\ A \otimes (B \ \mathfrak{P} \ (C \otimes D))_{\pi_{A,B,C \otimes D}} (A \otimes B) \ \mathfrak{P} \ (C \otimes D) \end{array}$$

MLL proof nets are canonical representative of equivalence classes of proofs:

MLL proof nets are canonical representative of equivalence classes of proofs:

$$\begin{array}{c} \underline{A \quad B, C} \\ \hline \underline{A \otimes B, C} \\ \hline \underline{A \otimes B, C \otimes D} \end{array} \xrightarrow{\rightarrow_{\gamma}} \begin{array}{c} \underline{A \quad B, C \quad D} \\ \hline \underline{A \otimes B, C \otimes D} \end{array}$$

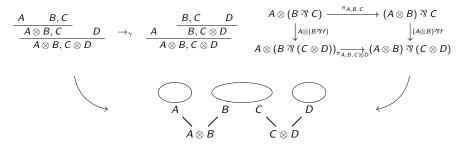
MLL proof nets are canonical representative of equivalence classes of proofs:

$$\begin{array}{c|c} \underline{A} & \underline{B}, \underline{C} \\ \hline \underline{A \otimes B}, \underline{C} & \underline{D} \\ \hline \underline{A \otimes B}, \underline{C \otimes D} \end{array} \xrightarrow{\rightarrow_{\gamma}} \begin{array}{c} \underline{B}, \underline{C} & \underline{D} \\ \hline \underline{A \otimes B}, \underline{C \otimes D} \end{array} \xrightarrow{\rightarrow_{\gamma}} \begin{array}{c} \underline{A} & \underline{B}, \underline{C} & \underline{D} \\ \hline \underline{B}, \underline{C \otimes D} \end{array} \xrightarrow{A \otimes (\underline{B} \ \Im \ C)} \begin{array}{c} A \otimes (\underline{B} \ \Im \ C) & \xrightarrow{\pi_{A,B,C}} \end{array} \xrightarrow{(A \otimes B) \ \Im \ C} \\ \begin{array}{c} \underline{A \otimes (B \ \Im \ C)} & \downarrow_{A \otimes (B \ \Im \ f)} \end{array} \xrightarrow{(A \otimes B) \ \Im \ C} \\ A \otimes (\underline{B} \ \Im \ (C \otimes D))_{\pi_{\overline{A},\overline{B},C \otimes D}} \end{array} \xrightarrow{(A \otimes B) \ \Im \ (C \otimes D)}$$

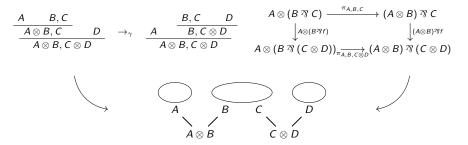
(ロ) (部) (注) (注) (注) ()

5/29

MLL proof nets are canonical representative of equivalence classes of proofs:



MLL proof nets are canonical representative of equivalence classes of proofs:



Then for two derivations d, d' it is equivalent:

- *d*, *d'* induce the same proof net
- d can be obtained from d' by permuting rules
- d, d' have the same interpretation in all *-autonomous category

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

A weaker approach: Trimble's rewiring

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

A weaker approach: Trimble's rewiring

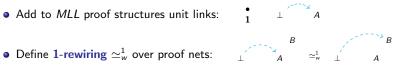
• Add to *MLL* proof structures unit links: $\begin{pmatrix} \bullet \\ 1 \end{pmatrix} \perp A$

・ロン ・四 と ・ 日 と ・ 日 ・

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

A weaker approach: Trimble's rewiring

- Add to *MLL* proof structures unit links: 1 A



The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

A weaker approach: Trimble's rewiring

• Add to *MLL* proof structures unit links: • $1 \bot A$ • Define 1-rewiring \simeq_w^1 over proof nets: • $\bot A \simeq_w^1 \bot A$ • Consider proof nets modulo rewiring \simeq_w , the refl./trans. closure of \simeq_w^1 .

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

A weaker approach: Trimble's rewiring

• Add to *MLL* proof structures unit links:
•
$$1 \perp A$$

• Define 1-rewiring \simeq_w^1 over proof nets:
• $\perp A = A$

The equivalence \simeq_{Perm} for MLL^+ (and the equivalence \simeq_{Diag} given by the free *-autonomous category) is *PSPACE*-complete [HH2014].Hence no reasonable canonical representative.

A weaker approach: Trimble's rewiring

• Add to *MLL* proof structures unit links:
•
$$1 \perp A$$

• Define 1-rewiring \simeq_w^1 over proof nets:
• Consider proof nets modulo rewiring \simeq_w , the refl./trans. closure of \simeq_w^1 .
Example:
 $\perp \Im \perp 1 \otimes 1 \simeq_w \perp \Im \perp 1 \otimes 1 1 \Im 1 \perp \otimes \perp \not\simeq_w 1 \Im 1 \perp \otimes \perp$

Then d, d' can be obtained by permuting rules iff they induce the same proof net up to rewiring.

Theorem: [BCST1996, Hughes2012] The category of *MLL*⁺ proof nets modulo rewiring is the free *-autonomous category.

Proof equivalence in System F

Some results which hold for *MLL* and λ_{\rightarrow} fails for *F*:

- separability (Böhm's theorem): there exists non separable $\beta\eta$ -distinct terms
- observational equivalence is undecidable

Proof equivalence in System F

Some results which hold for *MLL* and λ_{\rightarrow} fails for *F*:

- separability (Böhm's theorem): there exists non separable $\beta\eta$ -distinct terms
- observational equivalence is undecidable

Moreover, many "wanted" isomorphisms fail for $\beta\eta$:

- Russell-Prawitz translation: $A \lor B \simeq \forall X((A \Rightarrow X) \Rightarrow (B \Rightarrow X) \Rightarrow X)$
- initial algebras, final coalgebras: $\mu XA \simeq \forall X((A \Rightarrow X) \Rightarrow X), \nu XA \simeq \exists X((X \Rightarrow A) \land X)$
- "Yoneda isomorphism": $\forall X((A \Rightarrow X) \Rightarrow B[X]) \simeq B[A]$

Proof equivalence in System F

Some results which hold for *MLL* and λ_{\rightarrow} fails for *F*:

- separability (Böhm's theorem): there exists non separable $\beta\eta$ -distinct terms
- observational equivalence is undecidable

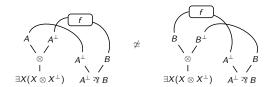
Moreover, many "wanted" isomorphisms fail for $\beta\eta$:

- Russell-Prawitz translation: $A \lor B \simeq \forall X((A \Rightarrow X) \Rightarrow (B \Rightarrow X) \Rightarrow X)$
- initial algebras, final coalgebras: $\mu XA \simeq \forall X((A \Rightarrow X) \Rightarrow X), \nu XA \simeq \exists X((X \Rightarrow A) \land X)$
- "Yoneda isomorphism": $\forall X((A \Rightarrow X) \Rightarrow B[X]) \simeq B[A]$

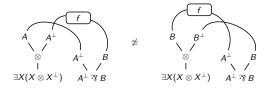
Hence $\beta\eta$ -equality is in general too weak and one has to look at **models**:

- Parametric models (extensional), characterize wanted isomorphisms and observational equivalence.
- Intensional models, characterize the $\beta\eta$ theory and provable isomorphisms.

As for System *F*, separability fails: these two proof nets are non separable:



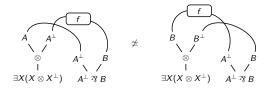
As for System F, separability fails: these two proof nets are non separable:



As for System F, many "wanted" isomorphisms fail:

- Russell-Prawitz translation: $A \otimes B \simeq \forall X((A \multimap B \multimap X) \multimap X))$
- "Yoneda isomorphism": $\forall X((A \multimap X) \multimap B[X]) \simeq B[A]$

As for System F, separability fails: these two proof nets are non separable:



As for System F, many "wanted" isomorphisms fail:

- Russell-Prawitz translation: $A \otimes B \simeq \forall X((A \multimap B \multimap X) \multimap X))$
- "Yoneda isomorphism": $\forall X((A \multimap X) \multimap B[X]) \simeq B[A]$

However, Seiller and Nguyen recently proved that observational equivalence in *MLL2* is decidable and has finitely many classes at each type.

Some remarks:

Some remarks:

• the "wanted" isomorphisms include $1 \simeq \forall X(X \multimap X), \perp \simeq \exists X(X \otimes X^{\perp})$: hence no "strong coherence" for *MLL*2.

$$\frac{A}{\bot,A} \underset{\bot,A\otimes B}{\underline{A}} = \underbrace{A} \underset{\bot,A\otimes B}{\underline{\Box}} \Rightarrow \underbrace{\frac{A}{A \otimes A^{\bot},A}}{\underline{\exists}X(X \otimes X^{\bot}),A \otimes B} = \underbrace{\frac{B}{B \otimes B^{\bot},B}}{\underline{\exists}X(X \otimes X^{\bot}),A \otimes B} = \underbrace{\frac{B}{B \otimes B^{\bot},B}}{\underline{\exists}X(X \otimes X^{\bot}),A \otimes B}$$

(日) (四) (王) (王) (王)

9/29

Some remarks:

• the "wanted" isomorphisms include $1 \simeq \forall X(X \multimap X), \perp \simeq \exists X(X \otimes X^{\perp})$: hence no "strong coherence" for *MLL*2.

$$\frac{A}{\perp,A} \underset{\perp,A\otimes B}{\underline{\bot},A\otimes B} = \underbrace{A} \underset{\perp,A\otimes B}{\underline{\bot},B} \xrightarrow{\underline{B}} \xrightarrow{\Rightarrow} \underbrace{\frac{A}{A^{\perp},A}}{\underline{\exists X(X\otimes X^{\perp}),A}} _{\underline{\exists X(X\otimes X^{\perp}),A\otimes B}} = \underbrace{\frac{B}{\underline{B\otimes B^{\perp},B}}}_{\underline{\exists X(X\otimes X^{\perp}),A\otimes B}} = \underbrace{\frac{B}{\underline{B\otimes B^{\perp},B}}}_{\underline{\exists X(X\otimes X^{\perp}),A\otimes B}}$$

 the "wanted" isomorphism ⊤ ≃ ∃XX says that all proofs of ∃XX are equal: hence MLL2 has some "additive" behavior (initial and terminal objects)

$$\begin{array}{cccc} \Gamma, \top & & & \frac{\Gamma, \Gamma^{\perp}}{\Gamma, \exists XX} \\ \vdots & = & \Delta, \top & \Rightarrow & \frac{\Gamma}{\Gamma, \exists XX} \\ \Delta, \top & & \vdots & \Delta, \exists XX \end{array}$$

9 / 29

Some remarks:

• the "wanted" isomorphisms include $1 \simeq \forall X(X \multimap X), \perp \simeq \exists X(X \otimes X^{\perp})$: hence no "strong coherence" for *MLL*2.

$$\frac{A}{\perp,A} \underset{\perp,A\otimes B}{\underline{\bot},A\otimes B} = \underbrace{A} \underset{\perp,A\otimes B}{\underline{\bot},B} \xrightarrow{\underline{B}} \xrightarrow{\Rightarrow} \underbrace{\frac{A}{A^{\perp},A}}{\underline{\exists X(X\otimes X^{\perp}),A}} _{\underline{\exists X(X\otimes X^{\perp}),A\otimes B}} = \underbrace{\frac{B}{\underline{B\otimes B^{\perp},B}}}_{\underline{\exists X(X\otimes X^{\perp}),A\otimes B}}$$

 the "wanted" isomorphism ⊤ ≃ ∃XX says that all proofs of ∃XX are equal: hence MLL2 has some "additive" behavior (initial and terminal objects)

$$\begin{array}{cccc} \Gamma, \top & & & \frac{\Gamma, \Gamma^{\perp}}{\Gamma, \exists XX} \\ \vdots & = & \Delta, \top & \Rightarrow & \frac{\Gamma, \Gamma^{\perp}}{\Gamma, \exists XX} \\ \Delta, \top & & \vdots & = & \frac{\Delta, \Delta^{\perp}}{\Delta, \exists XX} \end{array}$$

In general, all such new equivalences do not preserve witnesses of \exists . Hence we need new approaches to the syntax and semantics of the \exists -rule!

Outline

Proof nets and proof equivalence

2 Proof nets, coends and the Yoneda isomorphism

3) Weak coherence for coends

Observational equivalence (joint work with L. Tortora de Falco)

MLL2 and the coend calculus

*MLL*2 formulas correspond to multivariant functors $F, G : \mathbb{C}^{op} \otimes \mathbb{C} \to \mathbb{D}$, e.g. $\mathbb{C}(X, X)$, $X \otimes X^{\perp}$.

MLL2 and the coend calculus

*MLL*2 formulas correspond to multivariant functors $F, G : \mathbb{C}^{op} \otimes \mathbb{C} \to \mathbb{D}$, e.g. $\mathbb{C}(X, X)$, $X \otimes X^{\perp}$.

A dinatural transformation $\theta_A : F(A, A) \to G(A, A)$ is a family satisfying a class of diagram generalizing usual natural transformations.

MLL2 and the coend calculus

*MLL*2 formulas correspond to multivariant functors $F, G : \mathbb{C}^{op} \otimes \mathbb{C} \to \mathbb{D}$, e.g. $\mathbb{C}(X, X)$, $X \otimes X^{\perp}$.

A dinatural transformation $\theta_A : F(A, A) \to G(A, A)$ is a family satisfying a class of diagram generalizing usual natural transformations.

Limits and colimits of dinaturals are given by ends and coends

Essentially, quantifiers + equalizer/co-equalizer conditions

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 12/29

Many categorial constructions can be expressed in the coend calculus starting from

$$Nat(F(X), G(X)) \simeq \int_X \mathbb{C}(F(X), G(X))$$

Many categorial constructions can be expressed in the coend calculus starting from

$$Nat(F(X), G(X)) \simeq \int_X \mathbb{C}(F(X), G(X))$$

In particular we obtain a end version of the Yoneda isomorphism:

$$\int_X \mathbb{C}(\mathbb{C}(A,X),F[X]) \simeq F[A]$$

Many categorial constructions can be expressed in the coend calculus starting from

$$Nat(F(X), G(X)) \simeq \int_X \mathbb{C}(F(X), G(X))$$

In particular we obtain a end version of the Yoneda isomorphism:

$$\int_X \mathbb{C}(\mathbb{C}(A,X),F[X]) \simeq F[A]$$

From this we can deduce all "wanted" isos:

• units:
$$\mathbf{1}\simeq\int_X X
ightarrow X$$
, $\perp\simeq\int^X X\otimes X^\perp$

• connectives:
$$\int_X ((A \multimap B \multimap X) \multimap X) \simeq A \otimes B$$

• fixed points:
$$\int_X ((T[X] \multimap X) \multimap X) \simeq \mu X.T[X]$$

Many categorial constructions can be expressed in the coend calculus starting from

$$Nat(F(X), G(X)) \simeq \int_X \mathbb{C}(F(X), G(X))$$

In particular we obtain a end version of the Yoneda isomorphism:

$$\int_X \mathbb{C}(\mathbb{C}(A,X),F[X]) \simeq F[A]$$

From this we can deduce all "wanted" isos:

• units:
$$\mathbf{1}\simeq\int_X X
ightarrow X$$
, $\perp\simeq\int^X X\otimes X^\perp$

• connectives:
$$\int_X ((A \multimap B \multimap X) \multimap X) \simeq A \otimes B$$

• fixed points:
$$\int_X ((T[X] \multimap X) \multimap X) \simeq \mu X.T[X]$$

◆□ → ◆部 → ◆言 → ◆言 → ○ へ (~ 13/29

Dinaturality is a way of formalizing parametric polymorphism (i.e. uniformity of second order proofs)

Dinaturality is a way of formalizing parametric polymorphism (i.e. uniformity of second order proofs)

- If ${\mathbb C}$ is *-autonomous and complete, we can extend the interpretation to MLL2 as follows:
 - $(\forall XA[X])^{\mathbb{C}} := \int_X A^{\mathbb{C}}(X, X), \ (\exists XA[X])^{\mathbb{C}} := \int^X A^{\mathbb{C}}(X, X)$
 - derivations $d \vdash \Gamma$ in *MLL*2 yield dinaturals $d^{\mathbb{C}} : \mathbf{1} \to \Gamma^{\mathbb{C}}(\vec{X}, \vec{X})$

Dinaturality is a way of formalizing parametric polymorphism (i.e. uniformity of second order proofs)

If ${\mathbb C}$ is *-autonomous and complete, we can extend the interpretation to MLL2 as follows:

- $(\forall XA[X])^{\mathbb{C}} := \int_X A^{\mathbb{C}}(X, X), \ (\exists XA[X])^{\mathbb{C}} := \int^X A^{\mathbb{C}}(X, X)$
- derivations $d \vdash \Gamma$ in *MLL*2 yield dinaturals $d^{\mathbb{C}} : \mathbf{1} \to \Gamma^{\mathbb{C}}(\vec{X}, \vec{X})$

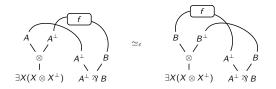
We let then

 $\pi \simeq_{\varepsilon} \sigma$ if for all \mathbb{C} *-autonomous and complete $\pi^{\mathbb{C}} = \sigma^{\mathbb{C}}$

 \simeq_{ε} is then a congruence which extends $\beta\eta$, due to equalizer/co-equalizer conditions.

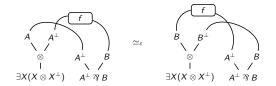
Coends and non separable proof nets

Equalizer/co-equalizer conditions capture non-witness-preserving permutations:



Coends and non separable proof nets

Equalizer/co-equalizer conditions capture non-witness-preserving permutations:

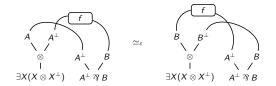


is just a coend diagram:

14 / 29

Coends and non separable proof nets

Equalizer/co-equalizer conditions capture non-witness-preserving permutations:



is just a coend diagram:

14 / 29

MLL2 proof nets are not dinatural

Similarly, the following equation in linear natural deduction

$$\frac{\forall X(X \to X)}{A \to A} \begin{bmatrix} n \\ A \end{bmatrix}}{ \begin{array}{c} f \\ f \\ \hline A \to B \end{array} n} \simeq_{\varepsilon} \frac{\forall X(X \to X)}{B \to B} \begin{bmatrix} n \\ A \end{bmatrix}}{ \begin{array}{c} B \\ \hline A \to B \end{array} n}$$

is just an end diagram:

$$\int_{X} \mathbb{C}(X, X) \xrightarrow{\delta_{A}} \mathbb{C}(A, A)$$
$$\downarrow^{\delta_{B}} \qquad \qquad \downarrow^{\mathbb{C}(A, f)}$$
$$\mathbb{C}(B, B) \xrightarrow{\mathbb{C}(f, B)} \mathbb{C}(A, B)$$

◆□ → < 部 → < 差 → < 差 → 差 < う Q (~ 15/29

Outline

Proof nets and proof equivalence

Proof nets, coends and the Yoneda isomorphism

Weak coherence for coends

Observational equivalence (joint work with L. Tortora de Falco)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≧ の Q (~ 17/29

Yoneda isomorphisms in MLL2:

$$\int_{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]) \simeq D[\bigotimes_{i}^{n} C_{i} \otimes \mathbf{1}_{\mathcal{Y}}]$$
$$\int^{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D^{\perp}[X^{\perp}]) \simeq D^{\perp}[\mathcal{X}_{i}^{n} C_{i}^{\perp} \mathfrak{N} \perp_{\mathcal{Y}}]$$

◆□ → < 部 → < 差 → < 差 → 差 → の へ ペ 17/29

Yoneda isomorphisms in MLL2:

$$\int_{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]) \simeq D[\bigotimes_{i}^{n} C_{i} \otimes \mathbf{1}_{\mathcal{Y}}]$$
$$\int^{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D^{\perp}[X^{\perp}]) \simeq D^{\perp}[\stackrel{n}{\underset{i}{\sum}} C_{i}^{\perp} \mathfrak{V} \perp_{\mathcal{Y}}]$$

 $MLL2_{\mathscr{Y}}$ is the fragment of MLL2 in which quantification is restricted to Yoneda formulas:

- $\forall XA \text{ is admitted only if } A \text{ is Yoneda in } X: A = (\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]$
- $\exists XA \text{ is admitted only if } A \text{ is co-Yoneda in } X : A = (\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D[X]^{\perp}$

Yoneda isomorphisms in MLL2:

$$\int_{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]) \simeq D[\bigotimes_{i}^{n} C_{i} \otimes \mathbf{1}_{\mathcal{Y}}]$$
$$\int^{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D^{\perp}[X^{\perp}]) \simeq D^{\perp}[\bigotimes_{i}^{n} C_{i}^{\perp} \Im \perp_{\mathcal{Y}}]$$

 $MLL2_{\mathscr{Y}}$ is the fragment of MLL2 in which quantification is restricted to Yoneda formulas:

- $\forall XA \text{ is admitted only if } A \text{ is Yoneda in } X: A = (\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]$
- $\exists XA \text{ is admitted only if } A \text{ is co-Yoneda in } X: A = (\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D[X]^{\perp}$

•
$$\mathbf{1}_{\mathcal{Y}} := orall X(X^{\perp} \ rak g \ X), \perp_{\mathcal{Y}} := \exists X(X \otimes X^{\perp})$$
 are ok;

Yoneda isomorphisms in MLL2:

$$\int_{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]) \simeq D[\bigotimes_{i}^{n} C_{i} \otimes \mathbf{1}_{\mathcal{Y}}]$$
$$\int^{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D^{\perp}[X^{\perp}]) \simeq D^{\perp}[\bigotimes_{i}^{n} C_{i}^{\perp} \Im \perp_{\mathcal{Y}}]$$

 $MLL2_{\mathscr{Y}}$ is the fragment of MLL2 in which quantification is restricted to Yoneda formulas:

- $\forall XA \text{ is admitted only if } A \text{ is Yoneda in } X: A = (\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]$
- $\exists XA \text{ is admitted only if } A \text{ is co-Yoneda in } X: A = (\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D[X]^{\perp}$

•
$$\mathbf{1}_{\mathcal{Y}} := orall X(X^{\perp} \ \mathfrak{N} X), \perp_{\mathcal{Y}} := \exists X(X \otimes X^{\perp})$$
 are ok;

•
$$\forall X((A \multimap B \multimap X) \multimap X), \exists X((A \multimap B \multimap X) \otimes X^{\perp}) \text{ are ok};$$

Yoneda isomorphisms in MLL2:

$$\int_{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]) \simeq D[\bigotimes_{i}^{n} C_{i} \otimes \mathbf{1}_{\mathcal{Y}}]$$
$$\int^{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D^{\perp}[X^{\perp}]) \simeq D^{\perp}[\bigotimes_{i}^{n} C_{i}^{\perp} \Im \perp_{\mathcal{Y}}]$$

 $MLL2_{\mathscr{Y}}$ is the fragment of MLL2 in which quantification is restricted to Yoneda formulas:

- $\forall XA$ is admitted only if A is **Yoneda in** X: $A = (\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]$
- $\exists XA \text{ is admitted only if } A \text{ is co-Yoneda in } X : A = (\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D[X]^{\perp}$

- $\mathbf{1}_{\mathcal{Y}} := \forall X(X^{\perp} \ \mathfrak{N} \ X), \perp_{\mathcal{Y}} := \exists X(X \otimes X^{\perp}) \text{ are ok};$
- $\forall X((A \multimap B \multimap X) \multimap X), \exists X((A \multimap B \multimap X) \otimes X^{\perp}) \text{ are ok};$
- $\forall X((X \otimes X^{\perp}) \stackrel{\mathcal{R}}{\to} (X \multimap X)), \forall X((T[X] \multimap X) \multimap X) \text{ are not ok.}$

Yoneda isomorphisms in MLL2:

$$\int_{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]) \simeq D[\bigotimes_{i}^{n} C_{i} \otimes \mathbf{1}_{\mathcal{Y}}]$$
$$\int^{X} ((\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D^{\perp}[X^{\perp}]) \simeq D^{\perp}[\bigotimes_{i}^{n} C_{i}^{\perp} \Im \perp_{\mathcal{Y}}]$$

 $MLL2_{\mathscr{Y}}$ is the fragment of MLL2 in which quantification is restricted to Yoneda formulas:

- $\forall XA$ is admitted only if A is **Yoneda in** X: $A = (\bigotimes_{i}^{n} C_{i} \multimap X) \multimap D[X]$
- $\exists XA \text{ is admitted only if } A \text{ is co-Yoneda in } X : A = (\bigotimes_{i}^{n} C_{i} \multimap X) \otimes D[X]^{\perp}$

- $\mathbf{1}_{\mathcal{Y}} := \forall X(X^{\perp} \ \mathfrak{N} \ X), \perp_{\mathcal{Y}} := \exists X(X \otimes X^{\perp}) \text{ are ok};$
- $\forall X((A \multimap B \multimap X) \multimap X), \exists X((A \multimap B \multimap X) \otimes X^{\perp}) \text{ are ok};$
- $\forall X((X \otimes X^{\perp}) \stackrel{\mathcal{R}}{\to} (X \multimap X)), \forall X((T[X] \multimap X) \multimap X) \text{ are not ok.}$

◆□ → ◆ □ → ◆ 三 → ◆ 三 → ○ へ (~ 18/29

Any formula $A = \exists X((\mathcal{D}_i^n C_i \mathcal{D} X) \otimes D[X^{\perp}])$ has a unique **co-edge** $c_A = (X, X^{\perp})$ (i.e. pair of dual existential variables). We let Γ^{\exists} be the set of co-edges in Γ .

Any formula $A = \exists X((\mathcal{D}_i^n C_i \mathcal{D} X) \otimes D[X^{\perp}])$ has a unique **co-edge** $c_A = (X, X^{\perp})$ (i.e. pair of dual existential variables). We let Γ^{\exists} be the set of co-edges in Γ .

An \exists -linking over Γ is a pair (E, W), where E is a linking over all non-existential variables in Γ and $W : \Gamma^{\exists} \to \Gamma$ is a witness function.

Any formula $A = \exists X((\mathcal{N}_i^n C_i \mathcal{R} X) \otimes D[X^{\perp}])$ has a unique **co-edge** $c_A = (X, X^{\perp})$ (i.e. pair of dual existential variables). We let Γ^{\exists} be the set of co-edges in Γ .

An \exists -linking over Γ is a pair (E, W), where E is a linking over all non-existential variables in Γ and $W : \Gamma^{\exists} \to \Gamma$ is a witness function.

Intuition: W assigns a witness to all \exists links in Γ .

Any formula $A = \exists X((\mathcal{D}_i^n C_i \mathcal{D} X) \otimes D[X^{\perp}])$ has a unique **co-edge** $c_A = (X, X^{\perp})$ (i.e. pair of dual existential variables). We let Γ^{\exists} be the set of co-edges in Γ .

An \exists -linking over Γ is a pair (E, W), where E is a linking over all non-existential variables in Γ and $W : \Gamma^{\exists} \to \Gamma$ is a witness function.

Intuition: W assigns a witness to all \exists links in Γ .

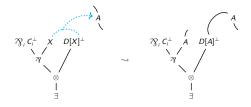
A compact representation of proof nets for MLL2₃:

Any formula $A = \exists X((\mathcal{N}_i^n C_i \mathcal{R} X) \otimes D[X^{\perp}])$ has a unique **co-edge** $c_A = (X, X^{\perp})$ (i.e. pair of dual existential variables). We let Γ^{\exists} be the set of co-edges in Γ .

An \exists -linking over Γ is a pair (E, W), where E is a linking over all non-existential variables in Γ and $W : \Gamma^{\exists} \to \Gamma$ is a witness function.

Intuition: W assigns a witness to all \exists links in Γ .

A compact representation of proof nets for $MLL2_{\mathscr{Y}}$:



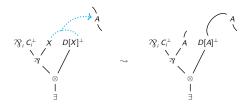
<ロ> <回> <回> < E> < E> = の

Any formula $A = \exists X((\mathcal{D}_i^n C_i \mathcal{D} X) \otimes D[X^{\perp}])$ has a unique **co-edge** $c_A = (X, X^{\perp})$ (i.e. pair of dual existential variables). We let Γ^{\exists} be the set of co-edges in Γ .

An \exists -linking over Γ is a pair (E, W), where E is a linking over all non-existential variables in Γ and $W : \Gamma^{\exists} \to \Gamma$ is a witness function.

Intuition: W assigns a witness to all \exists links in Γ .

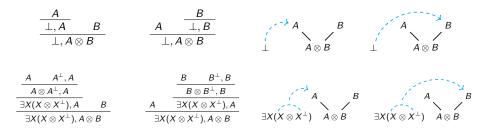
A compact representation of proof nets for $MLL2_{\mathscr{Y}}$:

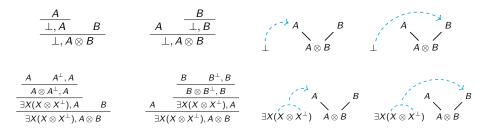


Correct \exists -linkings are considered up to **rewitnessing**: \simeq_w is the refl./trans. closure of 1-rewitnessing (i.e. changing W by W' differing only by one value).

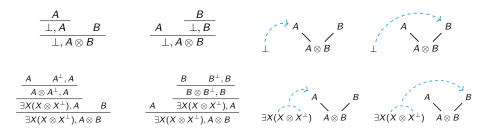
< □ > < 部 > < 言 > < 言 > 三 少 < ♡ 19/29

<ロ > < 部 > < 書 > < 書 > 差 の Q (~ 19/29



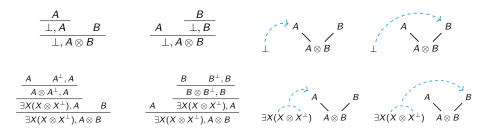


Theorem 1: the category of \exists -linkings modulo rewitnessing is *-autonomous with unit $\mathbf{1}_{\mathcal{Y}}$.



Theorem 1: the category of \exists -linkings modulo rewitnessing is *-autonomous with unit $\mathbf{1}_{\mathcal{Y}}$.

Theorem 2: the category of \exists -linkings over $MLL_{1_{\mathcal{Y}},\perp_{\mathcal{Y}}}$ modulo rewitnessing is the free *-autonomous category.



Theorem 1: the category of \exists -linkings modulo rewitnessing is *-autonomous with unit $\mathbf{1}_{\mathcal{Y}}$.

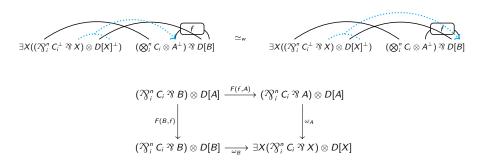
Theorem 2: the category of \exists -linkings over $MLL_{1_{\mathcal{Y}},\perp_{\mathcal{Y}}}$ modulo rewitnessing is the free *-autonomous category.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

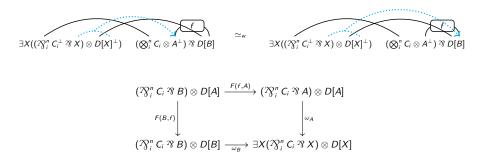
Up to rewitnessing, \exists is a coend in the category of \exists -linkings:

Up to rewitnessing, \exists is a coend in the category of \exists -linkings:

Up to rewitnessing, \exists is a coend in the category of \exists -linkings:



Up to rewitnessing, \exists is a coend in the category of \exists -linkings:



Theorem 3: for $MLL2_{\mathscr{Y}}$, the category of \exists -linkings modulo rewitnessing is isomorphic to the category of proof nets modulo \simeq_{ε} .

Outline

Proof nets and proof equivalence

Proof nets, coends and the Yoneda isomorphism

3) Weak coherence for coends

Observational equivalence (joint work with L. Tortora de Falco)

Observational equivalence

We consider the equivalence \simeq_{Obs} defined as follows:

 $\pi : A \simeq_{Obs} \sigma : A$ when for all P propositional and $\delta : A^{\perp}, P, [\pi, \delta] \simeq_{\beta\eta} [\sigma, \delta]$

In other words, we use MLL proof nets as observables

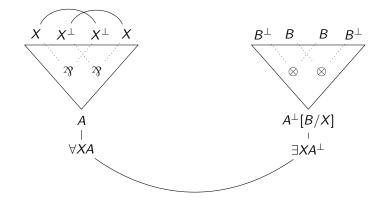
The proof nets $\delta : A^{\perp}, P$ are the observations

Remarks:

• many proof nets π : A have no observations (e.g. $A = \exists XX, \exists X(X \multimap X))$

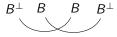
- hence for such formulas \simeq_{Obs} is trivial.
- \simeq_{Obs} includes \simeq_{ε} strictly

Cut-elimination in *MLL*2: transporting a \Im -linking onto a \otimes -linking:



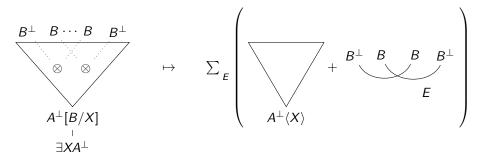
Hence $\exists XA^{\perp}$ codes information on how to respond to any \Re -linking for A (which are finitely many)

Cut-elimination in *MLL*2: transporting a \Im -linking onto a \otimes -linking:



Hence $\exists XA^{\perp}$ codes information on how to respond to any \Im -linking for A (which are finitely many)

This allows to define a translation $\pi \mapsto \sum_{i} \pi_{i}$ from *MLL*2 to formal sums of *MLL* proof nets:



Where E varies among the \mathcal{P} -linkings of A.

This procedure allows to eliminate all \exists -links and yields a finite set of *MLL* proof nets.

$$\pi \mapsto \sum_{i} \pi_{i}$$

Remarks:

- when a ℜ-linking does not exists (e.g. ∀XX), the construction yields the empty set (e.g. all proofs of ∃XX are equally empty).
- however, when π° : *A* is empty, then it means it has no observables: no σ : A^{\perp} , *P*, where *P* is propositional.

イロン 不良 とくほど 不良 とうほう

The interaction between a proof and an observation is characterized by the MLL translation:

Lemma. If $\pi : A$ and $\delta : A^{\perp}, P$, then there exist unique i, j in the *MLL* translations of π and σ such that

 $[\pi, \delta] \simeq_{\beta} [\pi_i, \delta_j]$

From this, and the usual characterization of \simeq_{Obs} for MLL, we get

Theorem. The MLL translation captures observational equivalence, i.e.

$$\pi \simeq_{Obs} \sigma \quad iff \quad \pi^\circ = \sigma^\circ$$

<ロト < 部ト < 言ト < 言ト 差 の Q (~ 26 / 29

A "finite" relational model for MLL2

The MLL translation induces an extension of the usual relational model of MLL to MLL2 satisfying

$$\llbracket \pi \rrbracket = \bigcup_{i} \llbracket \pi_i \rrbracket$$

- formulas correspond to certain polynomial functors Φ(x) = Π_{i,j}x_i^{n_i} · c_i^{m_i} (where the constants c_i stand for bound variables)
- proofs correspond to multi-graphical relations, i.e. family of relations $\theta_{\vec{x}}$ essentially induced by a finite set of *MLL* proof nets: for all sets \vec{a}

$$p_i(heta_{ec{a}}) = p_j(heta_{ec{a}})$$
 when $(i,j) \in \mathscr{G}$

and \mathscr{G} is some allowable graph (equivalently, a *MLL* proof net).

ullet this gives rise to a *-autonomous fibration $\mathbf{MG} \rightarrow \mathbf{P}$, with adjoints

$$\Sigma \dashv \pi^* \dashv \Pi$$

precisely corresponding to interpretation of \forall, \exists as finite sets of \Re -linkings/ \otimes -linkings.

Conclusions

We introduced two approaches to capture proof equivalence in MLL2 by a different interpretation of the \exists -link:

- by interpreting ∃ as a coend: we characterized the equivalence ≃_ε induced by coends by rewitnessing, a variant of Trimble's rewiring for a fragment of *MLL*2 related to the Yoneda isomorphism.
- by analyzing the behavior of \exists through cut-elimination, we defined a translation $\pi \mapsto \sum_i \pi_i$ from *MLL*2 proof nets to finite sets of *MLL* proof nets which
 - characterizes observational equivalence
 - leads to a "finite" relational model for *MLL*2 characterizing observational equivalence too.

Future work:

- Rewitnessing beyond Yoneda formulas (e.g. how to treat initial algebras?)
- Computing coends isomorphisms through proof nets?
- Observational equivalence for *MELL*2? Interaction between the *MLL* translation and Taylor expansion?

Thank you !