
An Asynchronous Soundness Theorem
for Concurrent Separation Logic

Paul-André Melliès Léo Stefanesco

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Diderot

CRECOGI+ELICA+GDRILL Plenary Meeting, 2018, Paris

1

Concurrent Separation Logic (CSL)

Concurrent Separation Logic is a logic for

concurrent programs with shared memory and locks.

Hoare triples

Γ`{P} C {Q}

are proved using derivation trees

...π
Γ`{P} C {Q}

2

Soundness theorem

Soundness theorem A
Starting from a state s � P,

no execution of C will crash

and if (C , s) ⇓ s′, then s′ � Q.

depends on individual instructions
will be seen as a 1-dimensional property

Soundness theorem B
Starting from s � P,

no execution of C will produce any data races.

depends on pairs of instructions
will be seen as a 2-dimensional property

3

Data races

A data race occurs when two instructions are executed in parallel and
either:

one writes to a location the other is reading,
or both instructions write to the same location.

x := 89 ‖ y := x + z

4

Soundness theorem

Soundness theorem A
Starting from a state s � P,

no execution of C will crash

and if (C , s) ⇓ s′, then s′ � Q.

depends on individual instructions

will be seen as a 1-dimensional property

Soundness theorem B
Starting from s � P,

no execution of C will produce any data races.

depends on pairs of instructions

will be seen as a 2-dimensional property

5

Soundness theorem

Soundness theorem A
Starting from a state s � P,

no execution of C will crash

and if (C , s) ⇓ s′, then s′ � Q.

depends on individual instructions
will be seen as a 1-dimensional property

Soundness theorem B
Starting from s � P,

no execution of C will produce any data races.

depends on pairs of instructions
will be seen as a 2-dimensional property

5

A Concurrent Shared Memory Language

6

Static Semantics of Imperative Languages

For non-concurrent languages, a good abstraction for a program C
is that of a state transformer:

JCK : States −→ States
initial state 7−→ final state

This is enough for sequential composition.
For concurrent languages, more information is needed:
the final value of y in

x := 0; y := x

can be any value, depending on what the environment does:

x := 0; y := x ‖ x := 77

7

Stateful traces
The traces contain the state at each step of the execution

JCK 3 s1
env−−−−→ s2

m1−−−−→ s3
env−−−−→ s4

m2−−−−→ s5
env−−−−→ s6

where:

the mi are elementary instructions,

eg. s
x := y+4z−−−−−−−−→ s′, s

P(r)−−−−−→ s′;

the env transitions are played by the Environment.

Example:

Jx := yK =
{
s1

env−−→s2
x :=y−−−→ s2[x := s1(y)]

env−−→s3 | ∀s1, s2, s3
}

8

Stateless traces

The traces are sequences of events

JCK 3 a1 a2 a3 . . . an−1 an

where:

the events ai are independent from the state,

the Environment implies non sequentially consistent traces.

eg. Wr(x , 89) · Rd(x , 70)

9

Our approach in this talk
Interpret programs as a 2-dimensional asynchronous graphs.

Each program C will have two related semantics, corresponding to
the stateful and the stateless trace semantics:

JCKS
L−−−−−−−−→ JCKL

Interpret derivation trees of CSL as asynchronous graphs:

s ... π
Γ`{P} C {Q}

{

Sep

S−−−−−−−−→ JCKS

Soundness = properties of these maps of asynchronous graphs.

10

Our approach in this talk
Interpret programs as a 2-dimensional asynchronous graphs.

Each program C will have two related semantics, corresponding to
the stateful and the stateless trace semantics:

JCKS
L−−−−−−−−→ JCKL

Interpret derivation trees of CSL as asynchronous graphs:

s ... π
Γ`{P} C {Q}

{

Sep

S−−−−−−−−→ JCKS

Soundness = properties of these maps of asynchronous graphs.

10

Our approach in this talk
Interpret programs as a 2-dimensional asynchronous graphs.

Each program C will have two related semantics, corresponding to
the stateful and the stateless trace semantics:

JCKS
L−−−−−−−−→ JCKL

Interpret derivation trees of CSL as asynchronous graphs:

s ... π
Γ`{P} C {Q}

{

Sep

S−−−−−−−−→ JCKS

Soundness = properties of these maps of asynchronous graphs.

10

Asynchronous graphs

Definition
An asynchronous graph is

a graph G = (V ,E , s, t), with s, t : E → V ,

a relation � between paths f , g : x � y of length 2,
with the same source and target nodes.

Two related paths form a tile.

11

Asynchronous graphs
Definition
An asynchronous graph is

a graph G = (V ,E , s, t), with s, t : E → V ,

a relation � between paths f , g : x � y of length 2,
with the same source and target nodes.

Two related paths form a tile.

u

v

v
,

u
,

11

Asynchronous graphs
Definition
An asynchronous graph is

a graph G = (V ,E , s, t), with s, t : E → V ,

a relation � between paths f , g : x � y of length 2,
with the same source and target nodes.

Two related paths form a tile.

u

v

v
,

u
,

11

Maps between asynchronous graphs
Definition
A map of asynchronous graphs

F : (G , �) −→ (G ′, �′)

is a graph homomorphism F : G → G ′ that maps tiles into tiles.

u

v

v
,

u
,

⇒
u

v

v
,

u
,

F

F F

F

Can be seen as a labeling for G .
12

The stateful machine model
The stateful machine model �S is defined as follows:

its nodes are machine states s ∈ (Loc ⇀fin Val)×P(Locks),

there is an edge s
m−−−→ s′ whenever JmK(s) = s′,

a square

m m′

m′ m
is a tile when

1. m and m′ do not synchronize: lock(m) ∩ lock(m′) = ∅

2. and do not induce a data race:

(rd(m) ∪ wr(m)) ∩ wr(m′) = ∅
(rd(m′) ∪ wr(m′)) ∩ wr(m) = ∅

13

The stateless machine model

The stateless machine model �L is defined as follows:

its nodes are lock states L ⊆ Locks,

there is an edge L m−−−→ L′ whenever JmK(L) = L′,

a square

m m′

m′ m
is a tile when

m and m′ do not synchronize: lock(m) ∩ lock(m′) = ∅.

14

Machine Models
�S �L

Nodes machine states s = (µ, L) with
memory state
µ : Loc ⇀fin Val

lock state L ⊆ Locks

lock states L ⊆ Locks

Edges s
m−−→ s′ for each JmK(s) = s′ L m−−→ L′ for JmK(L) = L′

Tiles data race-freedom
m m′

m′ m is a tile when:

lock(m) ∩ lock(m′) = ∅

(rd(m) ∪ wr(m)) ∩ wr(m′) = ∅
(rd(m′) ∪ wr(m′)) ∩ wr(m) = ∅

parallelism
m m′

m′ m

is a tile when:

lock(m) ∩ lock(m′) = ∅
15

Asynchronous Transition Systems (ATS)

Definition (ATS)
An ATS over a machine model � is an asynchronous graph G
together with a map of asynchronous graphs

λ : G −−−→ �

with a partition on G ’s edges, for the Code and the Environment

nodes are labeled by states,

edges are labeled by instructions m,

labels are consistent with the semantics of instructions:

x m−−−−−→ y =⇒ JmK
(
λ(x)

)
= λ(y)

16

Semantics of the Code
The semantics of a program C is a pair of related ATSs.

JCKS : GS(C) �S

JCKL : GL(C) �L

L LG (µ,L) 7→ L

Definition
The semantics is defined by induction of the structure of the Code:

JC1 ; C2K = JC1K ; JC2K, JC1 ‖ C2K = JC1K ‖ JC2K

where J·K is either stateful J·KS or stateless J·KL

17

Semantics of the Code
The semantics of a program C is a pair of related ATSs.

JCKS : GS(C) �S

JCKL : GL(C) �L

L LG (µ,L) 7→ L

Definition
The semantics is defined by induction of the structure of the Code:

JC1 ; C2K = JC1K ; JC2K, JC1 ‖ C2K = JC1K ‖ JC2K

where J·K is either stateful J·KS or stateless J·KL

17

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

18

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

18

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′

s
m−−−→ s′

s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

18

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

18

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

18

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′

s
m−−−→ s′

s
m−−−→ s′

18

The parallel product

C1 C2

C1 C1 ‖ C2 C2

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

s
m−−−→ s′ s

m−−−→ s′ s
m−−−→ s′

18

The parallel product
G1

λ1−−−−→ �, G2
λ2−−−−→ � 7−→ G1 ‖ G2

λ1‖2−−−−−→ �

Nodes of G1 ‖ G2: x1|x2 ∈ G1 × G2, such that λ1(x1) = λ2(x2)

λ1‖2(x1|x2) := λ1(x1) = λ2(x2)

Three types of transitions, e.g. x1|x2
m|m−−−−−→ x ′

1|x ′
2 is a pair:

x1
m−−−→ x ′

1 ∈ G1 and x2
m−−−→ x ′

2 ∈ G2

This transition is mapped by λ1‖2 to λ1‖2(x1|x2)
m−−−→ λ1‖2(x ′

1|x ′
2)

Tiles of G1 ‖G2 are tiles of G1, of G2, or made of instructions of the form

m1|m1 and m2|m2

19

Data races in the stateless semantics JCKL

A data race needs two unsynchronized instructions in some trace

· · · −→• m1−−−−→• m2−−−−→•−→ · · ·

thus coming with another schedule of m1 and m2:

· · · −→• m2−−−−→• m1−−−−→•−→ · · ·

In our approach, we turn it into a tile

20

Data races in the stateless semantics JCKL

A data race needs two unsynchronized instructions in some trace

· · · −→• m1−−−−→• m2−−−−→•−→ · · ·

thus coming with another schedule of m1 and m2:

· · · −→• m2−−−−→• m1−−−−→•−→ · · ·

In our approach, we turn it into a tile

20

Data races in the stateless semantics JCKL

A data race needs two unsynchronized instructions in some trace

· · · −→• m1−−−−→• m2−−−−→•−→ · · ·

thus coming with another schedule of m1 and m2:

· · · −→• m2−−−−→• m1−−−−→•−→ · · ·

In our approach, we turn it into a square

m1

m1m2

m2

20

Data races in the stateless semantics JCKL

A data race needs two unsynchronized instructions in some trace

· · · −→• m1−−−−→• m2−−−−→•−→ · · ·

thus coming with another schedule of m1 and m2:

· · · −→• m2−−−−→• m1−−−−→•−→ · · ·

In our approach, we turn it into a tile

m1

m1m2

m2

20

A topological account of data races

JCKS

JCKL

Data race = stateful hole above a stateless tile
21

Separation Logic (sequential)
Hoare logic with extended predicates:

` {P} C {Q}

Meaning of triple: ∀σ, σ′, (σ � P ∧ C , σ ⇓ σ′) ⇒ σ′ � Q

Predicates on the memory
P,Q, J ::= > | ⊥ | P ∨ Q | P ∧ Q | ∀v .P | ∃v .P | P ∗ Q | emp | v 7→ w

σ � P ∧ Q ⇐⇒ σ � P and σ � Q
σ � P ∗ Q ⇐⇒ ∃σ1σ2, σ = σ1] σ2 and σ1 � P and σ2 � Q
σ � emp ⇐⇒ σ = ∅

σ � v 7→ w ⇐⇒ σ = [v 7→ w]

22

The Frame Rule

`{P} C {Q}
`{P ∗ R} C {Q ∗ R}

C depends only on the resource P

`{P1} C1 {Q1} `{P2} C2 {Q2}
`{P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}

But C1 and C2 cannot communicate!

23

The Frame Rule

`{P} C {Q}
`{P ∗ R} C {Q ∗ R}

C depends only on the resource P

`{P1} C1 {Q1} `{P2} C2 {Q2}
`{P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}

But C1 and C2 cannot communicate!

23

The Frame Rule

`{P} C {Q}
`{P ∗ R} C {Q ∗ R}

C depends only on the resource P

`{P1} C1 {Q1} `{P2} C2 {Q2}
`{P1 ∗ P2} C1 ‖ C2 {Q1 ∗ Q2}

But C1 and C2 cannot communicate!

23

Concurrent Separation Logic

Associate an invariant J to each lock r in a context:

r1:J1, ..., rn:Jn`{P} C {Q}

Inference rules:

Γ`{P ∗ J} C {Q ∗ J}
Γ, r : J `{P} with r do C {Q}

Γ, r : J `{P} C {Q}
Γ`{P ∗ J} resource r do C {Q ∗ J}

24

Separated States
A separated state is a triple

(σC ,σ, σF)

∈

States × (Locks → States + {C ,F})× States

25

Separated States
A separated state is a triple

(σC ,σ, σF)

∈

States × (Locks → States + {C ,F})× States

25

Separated States
A separated state is a triple

(σC ,σ, σF)

∈

States × (Locks → States + {C ,F})× States

25

The separated machine model
The separated machine model �Sep is defined in a similar fashion.

Its nodes are separated states (σC ,σ, σF),

and there are two kinds of transitions

(σC ,σ, σF)
m−−−→ (σ′

C ,σ
′, σF)

(σC ,σ, σF)
m−−−→ (σC ,σ

′, σ′
F)

There is a map of asynchronous graphs

�Sep −−−−−−→ �S

26

Semantics of the derivation trees
Every CSL derivation tree

... π
Γ`{P} C {Q}

is interpreted as an ATS:

JπKSep : GSep(π) �Sep

JCKS : GS(C) �S

JCKL : GL(C) �L

S SG

L LG (µ,L) 7→ L

27

Semantics of the derivation trees
Every CSL derivation tree

... π
Γ`{P} C {Q}

is interpreted as an ATS:

JπKSep : GSep(π) �Sep

JCKS : GS(C) �S

JCKL : GL(C) �L

S SG

L LG (µ,L) 7→ L

27

An asynchronous soundness theorem

Theorem 1
The map of asynchronous graphs

s ... π
Γ`{P} C {Q}

{

Sep

S−−−−−−−−−→ JCKS

is a 1-dimensional fibration on Code transitions.

28

An asynchronous soundness theorem
Theorem 2
The map of asynchronous graphs

s ... π
Γ`{P} C {Q}

{

Sep

S−−−−−−−−−→ JCKS
L−−−−−−−−−→ JCKL

is a 2-dimensional fibration.

JπKSep

JCKL

⇒

29

Conclusion & Future work

A topological account of data races

A truly concurrent semantics for Concurrent Separation Logic
derivation trees gives a strategy for memory management

Extension to more sophisticated logics and programming languages
eg. higher order, more general concurrency primitives

Understand our semantics in a general categorical framework

Thank you!

30

Conclusion & Future work

A topological account of data races

A truly concurrent semantics for Concurrent Separation Logic
derivation trees gives a strategy for memory management

Extension to more sophisticated logics and programming languages
eg. higher order, more general concurrency primitives

Understand our semantics in a general categorical framework

Thank you!

30

