An Asynchronous Soundness Theorem
for Concurrent Separation Logic

Paul-André Melliés Léo Stefanesco

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Diderot

CRECOGI+ELICA+GDRILL Plenary Meeting, 2018, Paris

Concurrent Separation Logic (CSL)
Concurrent Separation Logic is a logic for

concurrent programs with shared memory and locks.

Hoare triples

={P} C{Q}

are proved using derivation trees

™

rH{P) € {Q)

Soundness theorem

Soundness theorem A

Starting from a state s F P,
no execution of C will crash

and if (C,s) | ¢, then s’ F Q.

Soundness theorem B
Starting from s E P,

no execution of C will produce any data races.

Data races

A data race occurs when two instructions are executed in parallel and
either:

@ one writes to a location the other is reading,

@ or both instructions write to the same location.

x =389 H y=x+z

Soundness theorem

Soundness theorem A

Starting from a state s F P,
no execution of C will crash

and if (C,s) | ¢, then s’ F Q.

@ depends on individual instructions

Soundness theorem B
Starting from s E P,

no execution of C will produce any data races.

@ depends on pairs of instructions

Soundness theorem

Soundness theorem A

Starting from a state s F P,
no execution of C will crash

and if (C,s) | ¢, then s’ F Q.

@ depends on individual instructions
@ will be seen as a 1-dimensional property

Soundness theorem B

Starting from s E P,

no execution of C will produce any data races.

@ depends on pairs of instructions
@ will be seen as a 2-dimensional property

A Concurrent Shared Memory Language

resource r do
while x > 0 do
x:=x—-1;
with r do with r do
y:=y+1 y:=y+1

Static Semantics of Imperative Languages

@ For non-concurrent languages, a good abstraction for a program C
is that of a state transformer:

[C]: States —> States
initial state — final state

This is enough for sequential composition.

@ For concurrent languages, more information is needed:
the final value of y in
x:=0;y:=x

can be any value, depending on what the environment does:

x:=0y:=x || x:=77

Stateful traces

The traces contain the state at each step of the execution

en m en m en
[C] 2 51— s) 2 63—~ 54 —2 55— 56

where:

@ the m; are elementary instructions,

x:=y+4z P(r)
eg. 5§ —T" ¢ 5§ — ¢,

@ the env transitions are played by the Environment.

Example:

. env x:=y env
[[X = y]] = 61——62 — So[x :=s1(y)] —53 | Vs1, 52, 53

Stateless traces

The traces are sequences of events
[C] 2 ataxas ... ap—1 an

where:
@ the events a; are independent from the state,

o the Environment implies non sequentially consistent traces.

eg. Wr(x,89) - Rd(x, 70)

Our approach in this talk
Interpret programs as a 2-dimensional asynchronous graphs.

Each program C will have two related semantics, corresponding to
the stateful and the stateless trace semantics:

<

'

[Cls (€]

Our approach in this talk
Interpret programs as a 2-dimensional asynchronous graphs.

Each program C will have two related semantics, corresponding to
the stateful and the stateless trace semantics:

<

[Cls

'

[ClL

Interpret derivation trees of CSL as asynchronous graphs:

S

X > IC
|l r-{P} C{Q}]Lep L€

10

Our approach in this talk
Interpret programs as a 2-dimensional asynchronous graphs.

Each program C will have two related semantics, corresponding to
the stateful and the stateless trace semantics:

<

[CTs [C].

'

Interpret derivation trees of CSL as asynchronous graphs:

S

. > C
|l r-{P} C{Q}]Lep L€

Soundness = properties of these maps of asynchronous graphs.

10

Asynchronous graphs

An asynchronous graph is
e agraph G = (V,E,s,t), withs,t: E— V,
@ a relation ¢ between paths f, g : x — y of length 2,
with the same source and target nodes.

Two related paths form a tile.

11

Asynchronous graphs
An asynchronous graph is
e agraph G=(V,E,s,t), withs, t: E— V,

o a relation ¢ between paths f, g : x — y of length 2,
with the same source and target nodes.

Two related paths form a tile.

u

11

Asynchronous graphs
An asynchronous graph is
e agraph G=(V,E,s,t), withs, t: E— V,

o a relation ¢ between paths f, g : x — y of length 2,
with the same source and target nodes.

Two related paths form a tile.

u

11

Maps between asynchronous graphs

Definition
A map of asynchronous graphs

F (G,0) — (G,

is a graph homomorphism & : G — G’ that maps tiles into tiles.

T u T’
=
Fv TFu’

Can be seen as a labeling for G.

12

The stateful machine model
The stateful machine model & s is defined as follows:

@ its nodes are machine states s € (Loc —, Val) x 2 (Locks),

o there is an edge s —— &' whenever [m](s) = ¢,

@ a square is a tile when

1. m and m’ do not synchronize: lock(m) Nlock(m') =0
2. and do not induce a data race:

(rd(m)Uwr(m))Nnwr(m') =0
(rd(m)Uwr(m’))Nwr(m) = 0

13

The stateless machine model
The stateless machine model &%, is defined as follows:

@ its nodes are lock states L C Locks,

o there is an edge L —"— L’ whenever [m](L) = L,

@ a square is a tile when

m and m" do not synchronize: lock(m) N lock(m’)

0.

14

Machine Models

Nodes

Edges

Tiles

*s

machine states s = (u, L) with

@ memory state
u: Loc —¢, Val
@ lock state L C Locks

s — &' for each [m](s) = s’

data race-freedom

*L

lock states L C Locks

L5 [for [m](L) = L'

parallelism

lock(m) N lock(m") =

(rd(m)Uwr(m))Nwr(m
(rd(m")Uwr(m')) N wr(m

—_—— =

is a tile when:

lock(m) N lock(m') =

15

Asynchronous Transition Systems (ATS)

Definition (ATS)
An ATS over a machine model & is an asynchronous graph G
together with a map of asynchronous graphs

A G — &£

with a partition on G's edges, for the Code and the Environment

@ nodes are labeled by states,
@ edges are labeled by instructions m,

@ labels are consistent with the semantics of instructions:

m

x——y = [m(Ax)) =)

16

Semantics of the Code

The semantics of a program C is a pair of related ATSs.

[Cls: Gs(C) r ks

[[C]]LZ GL(C) a Ub/_

The semantics is defined by induction of the structure of the Code:

[G: Gl =1al:[G], [l Gl=I[alllc]

where [-] is either stateful [-]s or stateless [-];

17

Semantics of the Code

The semantics of a program C is a pair of related ATSs.

[Cls: Gs(C) » ks
@ %! (L) L
[[C]]LZ GL(C) y kg

The semantics is defined by induction of the structure of the Code:

[G: Gl =1al:[G], [l Gl=I[alllc]

where [-] is either stateful [-]s or stateless [-];

17

The parallel product

G

Gl G

G

18

The parallel product

GG

G

18

The parallel product

GG

18

The parallel product

18

The parallel product

1 C1HC2 G

m / m / m /
§ —— § s —— 8§ § —— 8§

m / m / m /
s — § s —— § s — §

18

The parallel product

18

The parallel product

18

The parallel product

A A A1)2
G —— %, G 225 & — G1|]G2L>ac

Nodes of G; ” Go: X1|X2 € Gy x Gp, such that)\1(X1) =)\2(X2)

A fx2) = A1(x) = A2(x2)

e m|m T ‘.
Three types of transitions, e.g. xi|xo ——— x{|x3 is a pair:

X1L>X{EG1 and X2L>X£€G2

This transition is mapped by Ay, to Apjz(xa|x2) — s M 1x5)

Tiles of Gy || Gy are tiles of Gi, of Gy, or made of instructions of the form
my|my and my|ms

19

Data races in the stateless semantics [C];

A data race needs two unsynchronized instructions in some trace

my m2
. e ——— Y0 ——— S @—3 .-

20

Data races in the stateless semantics [C];

A data race needs two unsynchronized instructions in some trace
my my
el ——— e ——— S @—) .-
thus coming with another schedule of m; and my:

ma my
e e —— e ——— S @— .- -

20

Data races in the stateless semantics [C];

A data race needs two unsynchronized instructions in some trace
my my
>.—>.—>.>
thus coming with another schedule of m; and ms:

m2 my
che >0 — >0 ————H>@— - - -

In our approach, we turn it into a square

mp my

moy m

20

Data races in the stateless semantics [C];

A data race needs two unsynchronized instructions in some trace
my my
>.—>.—>.>
thus coming with another schedule of m; and ms:

m2 my
che >0 — >0 ————H>@— - - -

In our approach, we turn it into a tile

mp my

moy m

20

A topological account of data races

Data race = stateful hole above a stateless tile
21

Separation Logic (sequential)

Hoare logic with extended predicates:

={P} C{Q}
Meaning of triple: Vo,0',(cEP A C,olld') = ¢'EQ

Predicates on the memory
P,QJ:=T|L|PVQ|PAQ| Yv.P| Iv.P| PxQ|emp|v—w

cEPANQ < ocEPandoEQ

cEP*xQ < doi0p,0 =01Worandoi FPand oy EQ
cEemp < o=10

cEviw <= o=[v—w|

22

The Frame Rule

—{P} C{Q}

FH{PxR} C{Q xR}

C depends only on the resource P

23

The Frame Rule

F{P} C{G}
FH{PxR} C{Q xR}

C depends only on the resource P

H{P} G{@} H{P} G{Q}

|‘{P1 * Pz} G || G {Q1 * Q2}

23

The Frame Rule

F{P} C{G}
FH{PxR} C{Q xR}

C depends only on the resource P

H{P} G{@} H{P} G{Q}

|‘{P1 * Pz} G || G {Q1 * Q2}

But (; and (; cannot communicate!

23

Concurrent Separation Logic

Associate an invariant J to each lock r in a context:

rdi, ., doH{P} C{Q}

Inference rules:

FE{PxJ} C{QxJ}
Mr:JE{P}withrdo C{Q}

Mr:JH{P} C{Q}

M={Px J} resource rdo C {Qx* J}

24

Separated States

A separated state is a triple

(UC7 g, UF)
m
States x (Locks — States + {C, F}) x States

The Shared
Resources GF

The Environment

25

Separated States

A separated state is a triple

(UC7 g, UF)
m
States x (Locks — States + {C, F}) x States

The Shared

O’(j Resources . GF

The Code The Environment

25

Separated States

A separated state is a triple

(UC7 g, UF)
m
States x (Locks — States + {C, F}) x States

The Shared

Ye Resources Or

The Environment

The Code

25

The separated machine model

The separated machine model &% s, is defined in a similar fashion.
Its nodes are separated states (o¢, 0, 0F),

and there are two kinds of transitions
m / /
(O'C,O',O'F) I (Uc,O',O'F)

(UC7 g, UF) L) (O'C, 0-,7 0-;:)

There is a map of asynchronous graphs

dcsep _— dcs

26

Semantics of the derivation trees

Every CSL derivation tree 7 is interpreted as an ATS:
r={P} C{Q}
[7lsep i Gsep(T) > K Sep
[[C]]s : Gs(C) > ks
A i Le i i (L) =L
[[C]]L GL(C) > Xy

27

Semantics of the derivation trees

Every CSL derivation tree 7 is interpreted as an ATS:
r={P} C{Q}
[7]sep i Gsep() > &k sep
[[Cis : GJC) > ﬂ;s
,%’E .Sé’ci E(u:L)HL
(e Gl0) s %,

27

An asynchronous soundness theorem

The map of asynchronous graphs

— 7 qas

H FI—{P}EZ{Q} H

Sep

is a 1-dimensional fibration on Code transitions.

(oc,0,0F) (oc.0,0F) (0f,0",0F)
s = v F
51 m S92 51 m $9

28

An asynchronous soundness theorem

Theorem 2

The map of asynchronous graphs

L S <
HH—{P}C{Q}H —— [C]s ———— [,

Sep

is a 2-dimensional fibration.

[[W]] Sep

[ClL

29

Conclusion & Future work

A topological account of data races

A truly concurrent semantics for Concurrent Separation Logic
derivation trees gives a strategy for memory management

Extension to more sophisticated logics and programming languages
eg. higher order, more general concurrency primitives

Understand our semantics in a general categorical framework

30

Conclusion & Future work

A topological account of data races

A truly concurrent semantics for Concurrent Separation Logic
derivation trees gives a strategy for memory management

Extension to more sophisticated logics and programming languages
eg. higher order, more general concurrency primitives

Understand our semantics in a general categorical framework

Thank you!

30

