Randomised Strategies in the λ -calculus

Gabriele Vanoni

Politecnico di Milano (on leave)

October 8, 2018

Joint work with Ugo Dal Lago

Given a denumerable set of variables \mathcal{V} ,

$$(\texttt{terms}) M, N ::= x \in \mathcal{V} \mid MN \mid \lambda x.M$$
$$(\texttt{contexts}) C, D ::= \Box \mid MC \mid CM \mid \lambda x.C$$
$$(\beta\texttt{-rule}) (\lambda x.M) N \longrightarrow_{\beta} M\{N/x\}$$

 β -reduction relation is the contextual closure of the β -rule:

$$\frac{M \longrightarrow_{\beta} N}{C[M] \longrightarrow_{\beta} C[N]}$$

Example

How do we reduce $M = (\lambda x.x)N$ where $N = (\lambda x.x)y$?In M there are two contexts in which we can apply the β -rule.

In fact β -reduction is a relation, not a function!

How do we pick the redex to reduce in a λ -term?

We need a **reduction strategy**, i.e. a computable (partial) function that given a reducible λ -term selects the redex to reduce.

Example

Leftmost-outermost: $M \longrightarrow_{LO} N \longrightarrow_{LO} y$. Rightmost-innermost: $M \longrightarrow_{RI} (\lambda x.x)y \longrightarrow_{LO} y$.

Problems?

A few.

• Not all strategies are normalizing.

Let
$$\omega = \lambda x.xx$$
 and $\Omega = \omega \omega$. Note that $\Omega \longrightarrow_{\beta} \Omega$.
 $(\lambda x.y)\Omega \longrightarrow_{\mathsf{LO}} y$
 $(\lambda x.y)\Omega \longrightarrow_{\mathsf{RI}} (\lambda x.y)\Omega \longrightarrow_{\mathsf{RI}} (\lambda x.y)\Omega \longrightarrow_{\mathsf{RI}} \cdots$

• Reductions of the same term to normal form can be of **different length** under different strategies.

Let
$$\mathbf{I} = \lambda x.x.$$

 $(\lambda x.xx)(\mathbf{II}) \longrightarrow_{\mathsf{LO}} (\mathbf{II})(\mathbf{II}) \longrightarrow_{\mathsf{LO}} \mathbf{I}(\mathbf{II}) \longrightarrow_{\mathsf{LO}} \mathbf{II} \longrightarrow_{\mathsf{LO}} \mathbf{I}$
 $(\lambda x.xx)(\mathbf{II}) \longrightarrow_{\mathsf{RI}} (\lambda x.xx)\mathbf{I} \longrightarrow_{\mathsf{RI}} \mathbf{II} \longrightarrow_{\mathsf{RI}} \mathbf{I}$

Natural question

There exists a strategy that is **minimal** in the number of steps to **normal form**?

Predictable answer [Barendregt '84]

NO! (Of course such a function exists, but it is not computable in the general case)

So what?

Restricting ourselves to some **sub-\lambda-calculi** the problem of minimality becomes decidable.

Theorem

In λA , where copy is forbidden, LO is minimal. In λI , where erasing is forbidden, RI is minimal.

Any insight about the general case?

Gabriele Vanoni (PoliMi)

What if we choose the redex to reduce according to some probability distribution?

Example We can devise a randomised strategy U such that for each term *M*, every redex in *M* is reduced with the same probability i.e. $\frac{1}{|\mathcal{R}_M|}$. $(\lambda x.y)\Omega$ $(\lambda x.y)\Omega$

In order to study properties of such a strategy we need to develop a suitable mathematical framework.

Gabriele Vanoni (PoliMi)

Definition

$$\begin{split} \rho \in \mathsf{PDist}\,(S) \text{ if } \rho: S \to [0,1] \text{ and } |\rho| &= \sum_{s \in S} \rho(s) \leq 1.\\ \rho \in \mathsf{Dist}\,(S) \text{ if } \rho \in \mathsf{PDist}\,(S) \text{ and } |\rho| &= \sum_{s \in S} \rho(s) = 1. \end{split}$$

Definition (Randomised Strategies)

Given an ARS (S, \rightarrow) , a randomised reduction strategy P for (S, \rightarrow) is a partial function such that if $s \in S$ is in normal form, then $P(s) = \bot$, otherwise $P(s) = \mu$, and $Supp(\mu) \subseteq \{t \mid s \rightarrow t\}$.

(S, P) can be seen as a *fully* probabilistic abstract reduction system (FPARS), i.e. a purely probabilistic PARS, without any nondeterminism. The configuration of an FPARS is $\rho \in PDist(S)$, its evolution a function E : PDist $(S) \rightarrow PDist(S)$.

Termination

What does it mean that an FPARS (S, P) terminates? In a **probabilistic** setting there are different possible answers.

Definition (AST)

A term is almost-surely terminating if it reaches normal form in a finite number of steps almost-surely i.e. with probability 1.

Steps_P(s) is the **average** number of steps of s to its normal form.

Definition (PAST)

A term s is positive almost-surely terminating if $\operatorname{Steps}_{P}(s) < \infty$.

PAST implies AST but the converse is **not** true! Think about the simmetric random walk on \mathbb{Z} .

An example

Let us consider an abstract FPARS.

$$\frac{1}{2} \stackrel{\overset{}{\smile}}{\longrightarrow} \mathbf{a} \xrightarrow{\qquad \mathbf{b}} \mathbf{b}$$

The computation is a stochastic process:

Termination results

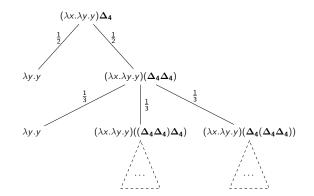
•
$$\lim_{n \to +\infty} |\rho_n| = \lim_{n \to +\infty} \frac{1}{2^{n-1}} = 0 \Rightarrow \mathsf{AST}.$$

• Steps_P(a) =
$$\sum_{n=1}^{\infty} |\rho_n| = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} = 2 \Rightarrow \text{PAST}$$

Gabriele Vanoni (PoliMi)

The uniform strategy is not PAST

Let $\Delta_2 = \lambda x.(xx)(xx)$, $\Delta_4 = \Delta_2 \Delta_2$ and $M = (\lambda x.\lambda y.y)\Delta_4$. Since $\Delta_4 \longrightarrow_{\beta} \Delta_4 \Delta_4$, reducing under U leads to the following tree:



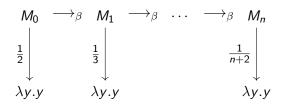
$$\operatorname{Steps}_{U}(M) = \sum_{i=1}^{\infty} |\rho_i| = \sum_{i=1}^{\infty} \frac{1}{i} = +\infty \Rightarrow (\Lambda_{WN}, U) \text{ is not PAST.}$$

Gabriele Vanoni (PoliMi)

Randomised Strategies

Because there is no **lower bound** on the probability of picking the LO-redex, the one that assures **normalisation**.

Consider again the term $M_0 = (\lambda x . \lambda y . y) \Delta_4$ and a reduction sequence of length *n*.



As $n \to +\infty$, the probability of picking the LO-redex goes to zero. Is the uniform strategy AST? Open problem.

A proof method for PAST

For $\varepsilon > 0$ we write $x >_{\varepsilon} y$ if and only if $x \ge y + \varepsilon$.

Definition

Given an FPARS (S, P), we define a function $V : S \rightarrow \mathbb{R}$ as Lyapunov if:

- There exists $b \in \mathbb{R}$ such that $V(s) \ge b$ for each $s \in S$.
- O There exists ε > 0 such that for every s ∈ S if P(s) = µ, then V(s) >_ε V(µ), where V is extended to partial distributions as follows:

$$V(\mu) = \sum_{t \in S} V(t) \cdot \mu(t).$$

Theorem ([Foster '53])

If we can define for an FPARS $\mathcal{P} = (S, \mathsf{P})$ a Lyapunov function V, then \mathcal{P} is PAST and Steps_P(s) is bounded by $\frac{V(s)}{\varepsilon}$.

Can we exploit Foster criterion to prove that a strategy is PAST?

Theorem

Each FPARS $(\Lambda_{WN}, R_{\epsilon})$ is PAST if R_{ϵ} reduces the LO-redex with probability $\epsilon > 0$.

Proof.

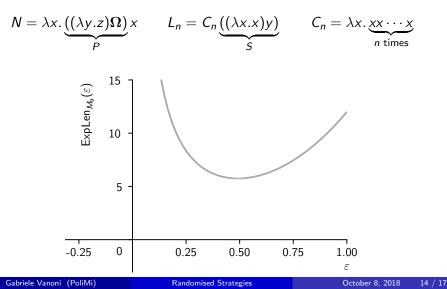
 $Steps_{LO}$ is a Lyapunov function for $(\Lambda_{WN}, R_{\epsilon})$

That means that reducing a term with a strategy R_{ε} brings to normal form in a **finite** number of steps, in **average**. Thus **efficiency** of any strategy R_{ε} should be compared to the one of LO.

We consider now a very simple strategy which reduces with probability $1 - \varepsilon$ the RI-redex. We call it P_{ε} .

P_{ε} is non trivial

Can P_{ε} be **more efficient**, in average, than LO? Let us consider a family of terms $M_n = NL_n$ where:



We have tried to find out which terms benefit from **randomisation**. We adopted an **experimental** approach, developing a **tool** that ouputs $\text{ExpLen}_{M}(\varepsilon)$ for a given M.

E.g. let $N_{n,m} = ((\lambda y.z)\mathbf{I}^m)(C_n(\mathbf{I}y))$. Where is worth randomising?

$m \setminus n$	1	2	3	4	5
1	cost	RI	RI	RI	RI
2	LO	Pε	P_{ε}	P_{ε}	P_{ε}
3	LO	P_{ε}	P_{ε}	P_{ε}	P_{ε}
4	LO	P_{ε}	P_{ε}	P_{ε}	P_{ε}
5	LO	Pε	P_{ε}	P_{ε}	P_{ε}

In all non-trivial cases it is worth randomising!

Analysis of ExpLen(ε)

We would want to analyze the shape of $\text{ExpLen}(\varepsilon)$. In particular we are interested in its **minima**. If $M \longrightarrow_{\text{LO}} N$ and $M \longrightarrow_{\text{RI}} L$ then

$$\mathsf{ExpLen}_{M}(\varepsilon) = \varepsilon \cdot \mathsf{ExpLen}_{N}(\varepsilon) + (1 - \varepsilon) \cdot \mathsf{ExpLen}_{L}(\varepsilon) + 1.$$

Differentiating with respect to ε we have

$$\begin{aligned} \mathsf{ExpLen}'_{\mathcal{M}}(\varepsilon) &= \mathsf{ExpLen}_{\mathcal{N}}(\varepsilon) - \mathsf{ExpLen}_{\mathcal{L}}(\varepsilon) + \\ &+ \varepsilon \cdot \mathsf{ExpLen}'_{\mathcal{N}}(\varepsilon) + (1 - \varepsilon) \cdot \mathsf{ExpLen}'_{\mathcal{L}}(\varepsilon). \end{aligned}$$

By induction we are able to prove **monotonicity** for sub- λ -calculi λA and λI , looking only at the **sign** of ExpLen_N(ε) – ExpLen_L(ε).

Theorem

In $\lambda A \text{ ExpLen}(\varepsilon)$ is monotonically decreasing. In $\lambda I \text{ ExpLen}(\varepsilon)$ is monotonically increasing. This was the first study on **randomised strategies**. Many questions remain **open**.

- Are there better randomised strategies?
- How to tune ε ?
- What about the real world?