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The usual untyped λ-calculus

Given a denumerable set of variables V,

(terms) M,N ::= x ∈ V | MN | λx .M

(contexts) C ,D ::= � | MC | CM | λx .C

(β-rule) (λx .M)N −→β M{N/x}

β-reduction relation is the contextual closure of the β-rule:

M −→β N

C [M] −→β C [N]
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Strategies in the λ-calculus

Example

How do we reduce M = (λx .x)N where N = (λx .x)y ?In M there
are two contexts in which we can apply the β-rule.

In fact β-reduction is a relation, not a function!

How do we pick the redex to reduce in a λ-term?

We need a reduction strategy, i.e. a computable (partial) function
that given a reducible λ-term selects the redex to reduce.

Example

Leftmost-outermost: M −→LO N −→LO y .
Rightmost-innermost: M −→RI (λx .x)y −→LO y .
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Problems?

A few.

Not all strategies are normalizing.

Let ω = λx .xx and Ω = ωω. Note that Ω −→β Ω.

(λx .y)Ω −→LO y

(λx .y)Ω −→RI (λx .y)Ω −→RI (λx .y)Ω −→RI · · ·

Reductions of the same term to normal form can be of
different length under different strategies.

Let I = λx .x .

(λx .xx)(II) −→LO (II)(II) −→LO I(II) −→LO II −→LO I

(λx .xx)(II) −→RI (λx .xx)I −→RI II −→RI I
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Minimal Strategies

Natural question

There exists a strategy that is minimal in the number of steps to
normal form?

Predictable answer [Barendregt ’84]

NO! (Of course such a function exists, but it is not computable in
the general case)

So what?

Restricting ourselves to some sub-λ-calculi the problem of
minimality becomes decidable.

Theorem

In λA, where copy is forbidden, LO is minimal.
In λI , where erasing is forbidden, RI is minimal.

Any insight about the general case?
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Randomised strategies

What if we choose the redex to reduce according to some probability
distribution?

Example

We can devise a randomised strategy U such that for each term
M, every redex in M is reduced with the same probability i.e. 1

|RM | .

(λx .y)Ω

y

1
2

(λx .y)Ω

1
2

In order to study properties of such a strategy we need to develop a
suitable mathematical framework.
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Fully Probabilistic Abstract Reduction Systems

Definition

ρ ∈ PDist (S) if ρ : S → [0, 1] and |ρ| =
∑
s∈S

ρ(s) ≤ 1.

ρ ∈ Dist (S) if ρ ∈ PDist (S) and |ρ| =
∑
s∈S

ρ(s) = 1.

Definition (Randomised Strategies)

Given an ARS (S ,→), a randomised reduction strategy P for (S ,→)
is a partial function such that if s ∈ S is in normal form, then
P(s) = ⊥, otherwise P(s) = µ, and Supp(µ) ⊆ {t | s → t}.

(S ,P) can be seen as a fully probabilistic abstract reduction system
(FPARS), i.e. a purely probabilistic PARS, without any
nondeterminism. The configuration of an FPARS is ρ ∈ PDist (S),
its evolution a function E : PDist (S)→ PDist (S).
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Termination

What does it mean that an FPARS (S ,P) terminates?
In a probabilistic setting there are different possible answers.

Definition (AST)

A term is almost-surely terminating if it reaches normal form in a
finite number of steps almost-surely i.e. with probability 1.

StepsP(s) is the average number of steps of s to its normal form.

Definition (PAST)

A term s is positive almost-surely terminating if StepsP(s) <∞.

PAST implies AST but the converse is not true! Think about the
simmetric random walk on Z.

AST PAST

/
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An example

Let us consider an abstract FPARS.

a b

1
21

2

The computation is a stochastic process:{
1 a

0 b
ρ0

 

{
1
2 a
1
2 b
ρ1

 

{
1
4 a
1
4 b
ρ2

 · · · 
{

1
2k

a
1
2k

b
ρk

 · · ·

Termination results

lim
n→+∞

|ρn| = lim
n→+∞

1
2n−1 = 0⇒ AST.

StepsP(a) =
∞∑
n=1
|ρn| =

∞∑
n=1

1
2n−1 = 2⇒ PAST
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The uniform strategy is not PAST

Let ∆2 = λx .(xx)(xx), ∆4 = ∆2∆2 and M = (λx .λy .y)∆4.
Since ∆4 −→β ∆4∆4, reducing under U leads to the following tree:

(λx .λy .y)∆4

λy .y

1
2

(λx .λy .y)(∆4∆4)

λy .y

1
3

(λx .λy .y)((∆4∆4)∆4)

· · ·

1
3

(λx .λy .y)(∆4(∆4∆4))

· · ·

1
3

1
2

StepsU(M) =
∞∑
i=1
|ρi | =

∞∑
i=1

1
i = +∞⇒ (ΛWN ,U) is not PAST.
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Why U is not PAST?

Because there is no lower bound on the probability of picking the
LO-redex, the one that assures normalisation.
Consider again the term M0 = (λx .λy .y)∆4 and a reduction
sequence of length n.

M0
−→β M1

−→β · · · −→β Mn

λy .y λy .y λy .y

1
2

1
3

1
n+2

As n→ +∞, the probability of picking the LO-redex goes to zero.

Is the uniform strategy AST? Open problem.
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A proof method for PAST

For ε > 0 we write x >ε y if and only if x ≥ y + ε.

Definition

Given an FPARS (S ,P), we define a function V : S → R as
Lyapunov if:

1 There exists b ∈ R such that V (s) ≥ b for each s ∈ S .

2 There exists ε > 0 such that for every s ∈ S if P (s) = µ, then
V (s) >ε V (µ), where V is extended to partial distributions as
follows:

V (µ) =
∑
t∈S

V (t) · µ (t) .

Theorem ([Foster ’53])

If we can define for an FPARS P = (S ,P) a Lyapunov function V ,

then P is PAST and StepsP(s) is bounded by V (s)
ε .
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(ΛWN,Pε) is PAST

Can we exploit Foster criterion to prove that a strategy is PAST?

Theorem

Each FPARS (ΛWN,Rε) is PAST if Rε reduces the LO-redex with
probability ε > 0.

Proof.

StepsLO is a Lyapunov function for (ΛWN,Rε)

That means that reducing a term with a strategy Rε brings to
normal form in a finite number of steps, in average. Thus
efficiency of any strategy Rε should be compared to the one of LO.

We consider now a very simple strategy which reduces with
probability 1− ε the RI-redex. We call it Pε.
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Pε is non trivial

Can Pε be more efficient, in average, than LO?
Let us consider a family of terms Mn = NLn where:

N = λx . ((λy .z)Ω)︸ ︷︷ ︸
P

x Ln = Cn ((λx .x)y)︸ ︷︷ ︸
S

Cn = λx . xx · · · x︸ ︷︷ ︸
n times
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Experimental work

We have tried to find out which terms benefit from
randomisation.We adopted an experimental approach, developing
a tool that ouputs ExpLenM(ε) for a given M.

E.g. let Nn,m = ((λy .z)Im)(Cn(Iy)). Where is worth randomising?

m\n 1 2 3 4 5
1 cost RI RI RI RI

2 LO Pε Pε Pε Pε
3 LO Pε Pε Pε Pε
4 LO Pε Pε Pε Pε
5 LO Pε Pε Pε Pε

In all non-trivial cases it is worth randomising!
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Analysis of ExpLen(ε)

We would want to analyze the shape of ExpLen(ε). In particular we
are interested in its minima.If M −→LO N and M −→RI L then

ExpLenM(ε) = ε · ExpLenN(ε) + (1− ε) · ExpLenL(ε) + 1.

Differentiating with respect to ε we have

ExpLen′
M(ε) = ExpLenN(ε)− ExpLenL(ε)+

+ ε · ExpLen′
N(ε) + (1− ε) · ExpLen′

L(ε).

By induction we are able to prove monotonicity for sub-λ-calculi
λA and λI , looking only at the sign of ExpLenN(ε)− ExpLenL(ε).

Theorem

In λA ExpLen(ε) is monotonically decreasing.
In λI ExpLen(ε) is monotonically increasing.
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Future works

This was the first study on randomised strategies. Many
questions remain open.

Are there better randomised strategies?

How to tune ε?

What about the real world?
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